

DNA Nanocomposites as Functional Materials in Cells and in Cell-free Systems

Svenja Moench, Carmen Martinez-Domínguez, Leonie Schneider, Simone Weigel, Kersten S. Rabe and Christof M. Niemeyer

Institute for Biological Interfaces (IBG-1)

Relation to P3T3 workplan

Synthesis of tailorable nanocomposites with non-linear mechanical stiffness and viscosity properties as substrate for cell culture and for cell-free protein expression

Synthesis of Biohybrid Composites

- Synthesis via Rolling Circle Amplification with $\Phi 29$ polymerase
- Integration of plasmid for fluorescent protein \rightarrow genetically coding materials

Silica nanoparticles

ST 1.3 DNA Materials (programmable interfaces) ST 2.1 Cell populations on surfaces (dynamic scaffolds) ST 3.2 Biohybrid Systems with integrated cell-free production

Characterization

Scanning **E**lectron **M**icroscopy^[1]

Multiple **P**article **T**racking Microrheology^[1]

Composite material	Storage modulus G ₀ [Pa]	
S100	$3,2 \pm 0,4$	Hig
SC50	$4,8 \pm 0,2$	
SC25	$8,5 \pm 0,7$	
C100	$2,8 \pm 0,2$	

- Adjustment of mechanical properties via SiNP/CNTs ratio
- Nomenclature is based on concentration ratio

Areas of application in eukaryotic cell culture & protein expression

Cultivation of mESC spheroids^[1]

Cultivation of Osteoblasts

- Nanocomposites allow the cultivation of stem cells
- Differentiation takes place after digestion
- Without differentiation medium cell morphology changes through the 3D cultivation substrate matching the one of differentiated bone cells
- Endonuclease digestion mESC spheriod Differentiation induction Endoderm Mesoderm Colonies **Ectoderm** After Colonies digestion
- Uptake by various cell lines^[2]
- Cell Free Protein Synthesis^[2]
- Composites are not cytotoxic \rightarrow cell division continues
- Hydrogels are ingested by different eukaryotic cell lines (>80%)

Use of protein-coding composites with HeLa lysate

Outlook

- Variety of biochemical and biotechnological application
- Tailored properties for cell-specific applications in cell culture
- Efficient matrix for protein synthesis in cell-free systems

Citation

[1] Y. Hu, C. M. Dominguez, J. Bauer, S. Weigel, A. Schipperges, C. Oelschlaeger, N. Willenbacher, S. Keppler, M. Bastmeyer, S. Heissler, C. Woll, T. Scharnweber, K. S. Rabe, C. M. Niemeyer, Carbonnanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings, Nat. Commun., 2019, 10, 5522. [2] A. Schipperges, Y. Hu, S. Moench, S. Weigel, J. Reith, D. Ordoñez-Rueda, K. S. Rabe, C. M. Niemeyer, Formulation of DNA nanocomposites: Towards functional materials for protein expression, Polymers, 2021, 13, 2395.

