MSE Day 18.11.2022

Correlative Characterisation of Magnetic Nanostructures using Transmission Electron Microscopy

András Kovács

Advanced electron microscopy @ Ernst Ruska-Centre

fz-juelich.de/er-c

JÜLICH

Forschungszentrum

Methods for magnetic imaging in TEM

Applications

Nanostructures

121111

Nanowires

100 nm

400 nm

Billion years of materials science through an Fe-Ni meteorite

Michalis Charilaou (U Lousiana, USA), Laura H. Lewis (Northeastern U, USA), Dierk Raabe (MPIE Düsseldorf), A Schwedt (RWTH)

ataxite, 41.6 at% Ni, 1805 g

Tetrataenite, δ", L1₀-FeNi, P4mmm, a=0.253 c=0.358 nm

- 20 billion Euro market share of permanent magnets in 2020
- 200-400 kA/m coercivity of Nd-Fe-B, Sm-Co (+Dy, Tb, Y, etc)
- 90-300 kA/m of L1₀-FeNi
- L1₀-FeNi can't be produced in laboratory conditions

Measurement sequence using electron microscopy

Correlative measurements of structure and magnetic properties

Atom probe tomography

7

Nanometre scale phase decomposition

A6-Fe₉₀Ni₁₀, ???

What kind of magnet is the new Fe-Ni phase?

90 Fe / 10 Ni at %
A6 fct, P4
a*=0.3576, c*=3589 Å

Atomistic simulations

Non-collinear antiferromagnetic ground state

Micromagnetic simulation

pubs.acs.org/NanoLett

Letter

Discovery and Implications of Hidden Atomic-Scale Structure in a Metallic Meteorite

András Kovács,* Laura H. Lewis, Dhanalaksmi Palanisamy, Thibaud Denneulin, Alexander Schwedt, Edward R.D. Scott, Baptiste Gault, Dierk Raabe, Rafal E. Dunin-Borkowski, and Michalis Charilaou*

2

Read Online

- We still don't know how to grow tetrataenite
- Correlative APT and TEM methods reveal the constituent phases in a metallic meteorite those responsible for the striking magnetic properties
- Micromagnetic (or atomistic) simulations are essential
- A new antiferromagnetic Fe-Ni phase observed

12

Summary

- Materials science and technology investigations require multiple \geq combinations of different experimental and theoretical techniques
- Electron microscopy is a unique tool that provides wide range of \succ methoodologies
- Multiple level and various data acquisition and processing is a challenge \geq

Acknowledgement

@ER-C

Rafal Dunin-Borkowski, Lidia Kibkalo, Thibaud Denneulin, Amir Tavabi, Penghan Lu, Fengshan Zheng, René Borowski

Skyrmion tomo A Lubk, D Wolf, S Schneider, B Rellinghaus

HELMHOLTZ

Ernst Ruska-Centre and Spectroscopy with Electrons

In situ 4D-STEM of strain-engineered nanomagnetism

Collaboration FZJ – KIT within the Joint Lab MDMC

Measure nanoscale strain and magnetic contrast simultaneously during *in situ* tensile straining using ultrafast event-driven detector augmented by high-throughput live data processing

14

FZJ: Penghan Lu, Deli Kong, András Kovács, Dieter Weber, Alexander Clausen, Rafal E Dunin-Borkowski

KIT: Xiaoke Mu, Lucas Brauch, Maximilian Töllner, Christian Kübel

New event-driven detector installed at ER-C, FZJ, allowing for MHz 4D-STEM!

