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Ingredients of a Digital Twin

Data
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Ingredients

Theory/Model specification

noise simplifications

confounders

simulation code Machine Learning

multiscale

Integration

data driven validation
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Showcase 1. Machine Learning for optimizing polymer membranes
Motivation

« Machine Learning for functional dependencies (objective functions) which cannot be
quantified easily

» Correlate process parameters and the resulting membrane characteristics
Invert to elicit the optimal process parameters for the intended membrane properties
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Showcase 1. Machine Learning for optimizing polymer membranes

« What if the optimal targets are unknown?
(process parameters - unknown_topology_characteristics)

« What if manual labeling is prohibitively expensive?
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Showcase 2: Machine Learning for Mg-Corrosion
Motivation

 Feature selection:
 to enable surrogate models
(by improving the signal/noise ratio)
* to drive experimental design choices

Predicted inhibition efficiency

 Data-driven dimensionality reduction:
using Machine Learning as an intermediate stage
to bootstrap analytical understanding

Predicted vs. true inhibition efficiency ZE41 / %
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Showcase 2: Machine Learning for Mg-Corrosion
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Showcase 3: Synthetic data in electron microscopy
Motivation

* Use case:
Machine Learning to solve the shine-through effect in FIB data of nanoporous materials

* Use case:
Machine Learning to correct original data (FIB slice allocation)

Nanoporous gold Hierarchical nanoporous gold

8 HELMHOLTZ



Showcase 3: Synthetic data in electron microscopy
Results

v

for automatic

W Machine learning
segmentation

(if sufficient quantities
of data are available)

In case of insufficient data to train the Machine Learning model:
construct our own synthetic data in 2 steps:
virtual microstructures - MC simulations - synthetic data usable for supervised learning
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Showcase 3: Synthetic data in electron microscopy
Results: Improved segmentation, Correcting original data
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Showcase 4: Neural Architecture Search: the ,Surgeon’
Motivation

» Machine Learning models have a large number

of hyperparameters
(learning rate, activation function, gd optimizer,

batch size, topology choices, etc.)

 Finding the best combination for a given problem
is infeasible (combinatorial explosion)

* Network choices have to reflect a #1 — ecronas
deep understanding about the problem domain 071  fmseine
that is not necessarily present

(CNN vs. FENN, LSTM vs. Transformers,

best type of autoencoder, etc.)
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Showcase 4: Neural Architecture Search: the ,Surgeon”

Training phase Modification phase Competition
Current branches Generate candidates Select new branches

Modification choices can also e.g. uphold physical constraints (e.g. Navier-Stokes, PINN
12 alternative); optimize runtime constraints (#weights) HELMHOLTZ



Take-Home Message

 Digital Twin: a toolkit rather than a monolithic sibling

* The role(s) of Machine Learning for Digital Twins in VMD
 Bridging the gaps between the digital twin components

* (In some cases)
Building understanding,
transfer learning for optimizing data acquisition

* (In rare cases)
Surrogate models
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