Program MSE MSE Day 18.11.2022

A Digital Twin in the Context of Photonic Material Design

Markus Nyman

Co-authors: Xavier Garcia-Santiago, Marjan Krstić, Ivan Fernandez-Corbaton, Martin Wegener, Willem Klopper, Carsten Rockstuhl

HELMHOLTZ

Introduction

HELMHOLTZ

Motivation

Chiral molecule = no mirror symmetry

Left-handed enantiomer Right-handed enantiomer

Examples: Most amino acids & other biomolecules Many drug / medicinal molecules

Motivation

Chiral molecule = no mirror symmetry

Left-handed enantiomer

Right-handed enantiomer

Examples: Most amino acids & other biomolecules Many drug / medicinal molecules

Optical measurement of chirality

Problem: Chirality of molecules is weak Solution: Nanophotonic enhancement

Digital twin

HELMHOLTZ

Quantum chemistry calculations & nanophotonic enhancement

Quantum chemistry calculations & nanophotonic enhancement

Quantum chemistry calculations & nanophotonic enhancement

Predicting measurement results & analyzing the data

Example of enhanced measurement

Predicting measurement results & analyzing the data

Conclusions

- Digital twin approach allows us to:
 - Accurately determine molecules' quantum-mechanical properties
 - Design a device that makes measurements of molecular chirality faster
 - Predict and analyze the results of a real-world experiment
- Future work
 - Experimental realization

- Impact
 - 50 1000 faster measurement, or being able to measure smaller concentrations
 - Laboratory experiment, production