(Re)Interpreting LHC results

David Yallup

16th MCnet Meeting Karlsruhe

LICL MCnet

Reinterpretation of ATLAS/CMS results

- Results ATLAS/CMS searches/measurements
 - What different results do we produce
 - What are the implications for interpreting these results for arbitrary new physics models
- The MCnet point of view
 - What do we need from our physics predictions to reinterpret results
 - Rivet/Contur MCnet projects aiming to tackle these problems

Results

Roughly speaking need to know how to

convert a particle level simulation (MC

Generator output) $\boldsymbol{\sigma}$ to an observed count

in a detector volume \mathbf{N}_{obs}

$$N_{\mathsf{obs}} = L \cdot \sigma_{\mathsf{Total}} \cdot A \cdot \epsilon$$

- L Luminosity, known
- A Acceptance, effectively the analysis definition
 - Can be simple, what about complicated analyses, BDTs for S/B discrimination etc.
- ϵ Efficiency, Detector simulation
 - Approximate detector sims, e.g. Delphes used

Current hot topic inside/outside experiment, how do we deliver A and ϵ better?

Example: Detector level results

 $S_{\rm obs}^{95}$

19135

11903

6771

3344

1546

696

276

178

79

59

Detector Level Result - e.g. monojet

Signal channel

IM1

IM2

IM3

IM4

IM5

IM6

IM7

IM8

IM9

IM10

Need Detector Simulation and Signal Acceptance

Something like CheckMATE (Delphes + analysis def) To reinterpret these results in terms of a new model

 $\langle \sigma \rangle_{\rm obs}^{95}$ [fb]

531

330

188

93

43

19

7.7

4.9

2.2

1.6

Example: Particle level results

Particle Level Result

Lots of different ways to try and do more for reinterpretability from the experiments, no clear solution fo all

All come with different caveats on usability

Conservative limits with $A.\varepsilon$ given

Example: Unfolding

Segues nicely to a particular ATLAS analysis that is of interest (and that I work on!)

Experiment takes care of ϵ , use full detector simulation

Validated rivet analysis gives A (as for all SM rivet routines that are already in Rivet

arxiv.org/abs/1707.03263

Unfold a measurement of $\sigma(Z \rightarrow \nu \nu / Z \rightarrow II) = R^{Miss}$

Provides detector corrected measurements of distribution sensitive to production of invisible particles at the LHC, **first unfolded measurement to do this** Can apply to DM models, SUSY....

Activity

Complex spectrum of Analyses, models, information that need bringing together.

Very much a hot button topic right now, many MCnet members involved in various projects that touch upon these areas

(RE)INTERPRETING LHC NEW PHYSICS SEARCH RESULTS: TOOLS AND METHODS

3rd meeting of the LHC (Re)interpretation Forum

16-18 OCTOBER 2017, FERMILAB, LPC

(Re)interpretation methods, current studies

 Reviews from experiments
 Tutorials on (re)interpretation tools
 Machine learning for (re)interpretation

 LHC open data

Loads of Activity/Initiatives from both sides:

Rivet, Contur, CheckMATE, MadAnalysis, Delphes, Simplified Likelihoods, SModelS, Gambit.... Many more

Contur

- MCnet project for ITN3, under the CEDAR banner
 - MCnet ITN3 long term 0 associated PhD student @ UCL/Glasgow nodes
 - Strong ties to Rivet -0 involvement with Glasgow node
 - Jon Butterworth, David 0 Grellscheid, DY. Currently involved MCnet members.

Fundamental design choice, see what precision Standard Model measurements can tell us about new physics

information covering a lot of final states!

Simplified DM model

$$\mathcal{L} \supset g_{\rm DM} \, \overline{\psi} \gamma_{\mu} \gamma_5 \psi \, Z'^{\mu} + g_q \sum_q \bar{q} \gamma_{\mu} q \, Z'^{\mu} \,,$$

Introduce BSM model with 4 degrees of freedom

Vector Mediator mass M_z

DM Mass M_{DM}

DM-Mediator Coupling g_{DM}

Quark Mediator coupling g_{α}

Commonly discussed at LHC DM WG

Simplified DM model

Throw events (from Herwig) through SM Rivet routines

Right, ATLAS 7TeV Dijet

The Caveat:

Assume SM expected background is equal to data

(Conclusion, roughly, from the paper, mirrors how we already understand these data)

Compute significance of resulting BSM deviations (Profile Likelihood formalism)

10

Simplified DM model

Throw events (from Herwig) through SM Rivet routines

Simultaneous fit to orthogonal datasets:

CMS jet measurement (right)

400

200

600

800

1.0

1200

 p_T (GeV)

1000

2000 2000 Simplified DM model 1600 1600 Manually scan through mass MDM [GeV] $M_{\rm DM} \, [{\rm GeV}]$ 12001200plane parameter space points Build exclusion limits from 800 800 combinations of measurements 400 400 500 1000 1500 2000 500 1000 1500 2000 2500 2500 3000 3000 $M_{Z'}$ [GeV] $M_{Z'}$ [GeV] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 CL of exclusion

Update: Continually updating Rivet routines from original dataset, Thanks to Jon+Masters Students

Define coupling working point, here, $g_a=0.5$, $g_{DM}=1$

Combine As many orthogonal analyses as possible 7,8,13TeV

Contur - Developments

Code work

Currently working on a formal release of the Python module containing executables and instructions to compute limits

Hopefully define a framework for generic limit setting on yoda inputs

Extend framework

Extend to cover MC based background predictions, fairly simple change internally but can be driven by MC predictions from experimental papers?

Diversify model studies

Work in progress, nothing public to show but looking at sensitivity to models predicting different final states

Contur - Developments

Correlations

Increasingly experiments looking to give breakdown of systematic correlations, and for non orthogonal kinematic regions, statistical correlations

Exists (right) for R_{Miss} unfolded ratio measurement Start thinking Start combining bins mentioned earlier more about non R^{miss} ATLAS resonant effects √s= 13 TeV 2 fb⁻¹ 10 etc. Formalise in HepData simp. DM (M_=10 GeV, M_=1 TeV) Formalise these objects in Yoda ny (M =125 GeV, B=50%) Vⁱ_{uv}, M_a=100 GeV, Λ_{EET}=0.8 TeV) Var Var, M_=100 GeV, AFFT=0.8 TeV) Data / SM (hard to work with unless theres a unified way of 1.2 delivering the data) 2500 3000 3500 4000 500 1000 1500 2000 m, [GeV]

R^{miss}

Data / SM

1.2

0.8

200

ATLAS

 ≥ 1 iet

√s= 13 TeV 3.2 fb⁻¹

600

DM (7 2 E"

=100 GeV, A EFT=0.8 TeV)

800

/ M_=100 GeV, Λ_==0.8 TeV)

1000

1200

p^{miss} [GeV]

1400

Contur - Developments/Plans

Will work better for EFT (some precedent to use Professor in this context already, see TopFitter)

Conclusion

- Ongoing project with lots of potential extensions
- Interacting with lots of MCnet tools,
 - Currently looking at MadGraph for BSM generation alongside Herwig
 - Rivet, Yoda, Hepdata, Professor etc.
- New Results soon!