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Goals

1. Give a brief introduction to the Casimir force
2. Show some examples of renormalization
3. Explain how to numerically solve integral equations
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Existing methods

I Mode summation
I Theoretically useful - gold standard
I Applicable only to very specific configurations

I Proximity force approximation
I Approximates curves as sets of small parallel plates
I Only applicable to small separations

I Finite difference time domain (lattice method)
I Well-tested in electromagnetism
I Applicable to complex geometries
I Discretizes the whole space, which is computationally

expensive
I Functional integral method

I Expresses the force in terms of a matrix determinant derived
from a functional integral

I Cumbersome and theoretically shaky
I Efficient, but we can’t parallelize it
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The boundary integral method

Advantages:

I Boundary integral methods are well known
I The expression for the force is relatively simple
I Renormalization is geometry-independent
I Gives the pressure at each point
I Requires solving a system of linear equations, which is trivially

parallelizable
I Simplifications from symmetries can be explicitly implemented
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Underlying equations

The free massless scalar field is determined by the Lagrangian

L =
1

2
ηµν∂µφ∂νφ

which obeys the Euler-Lagrange equation,

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0

This is equivalent to the wave equation,

∇2φ− φtt = 0
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Energy of the free scalar field

∇2φ− φtt = 0

Taking the Fourier transform in time,

∇2φ+ ω2φ = 0

With boundary conditions, only a set of resonance frequencies {ωn}
are allowed. The energy is given by

E =
1

2

∑
n

ωn

This is the Casimir energy.
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Parallel plates
As an example, let’s
consider parallel plates in
one-dimensional space
with Dirichlet boundary
conditions.

φxx + ω2φ = 0

φ(0) = φ(a) = 0

General solutions are given by

φ(x) = A cosωnx+B sinωnx, ωn =
nπ

a

This presents a problem, because

E =
1

2

∑
n

ωn =
∞∑
n=1

nπ

2a
=∞
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Renormalization

Approaches to renormalization

I Separate the energy into two parts E(x, t) = E∞ + E(x, t),
where E is finite and E∞ is constant. Note that ∇E = ∇E .

I Separate into energy from mutual interactions and
self-interactions. Only mutual interactions can give a net force.

I Mathematical tools such as analytic continuation with zeta
renormalization or Ramanujan summation.

R

∞∑
n=1

n = − 1

12
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Configuration

We consider a set of compact objects V1, . . . , Vr with boundaries
Q1, . . . , Qr. Let V0 be the exterior of all objects, and denote by Q
the union of all surfaces.

13 / 49



The massless scalar field

The free massless scalar field is determined by the Lagrangian

L =
1

2
ηµν∂µφ∂νφ

The stress-energy tensor:

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL

Conservation laws:
∂νT

µν = 0

∂tp+∇ · S = 0

Fα = ∂t

∫
Vα

dV p(x, t) = −
∮
Qα

dA · S(x, t)
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Quantizing the stress tensor

The stress tensor is given by

S(x, t) = −∇φ∇φ+
1

2
Tr(∇φ∇φ)I − 1

2
φ2t I

To be able to quantize this, we use point splitting

S(x, t) = lim
x′→x
t′→t

(
−∇∇′ + 1

2
Tr(∇∇′)− 1

2
∂t∂t′

)
φ(x, t)φ(x′, t′)

Then we can quantize the field and get the quantum stress tensor

Ŝ(x, t) = lim
x′→x
t′→t

(
−∇∇′ + 1

2
Tr(∇∇′)− 1

2
∂t∂t′

)
1

2
{φ̂(x, t)φ̂(x′, t′)},

where {·, ·} is the anti-commutator.
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The Green’s function

After a Wick rotation s = it, we can show that

1

2

〈
{φ̂(x, s)φ̂(x′, s′)}

〉
=
〈
T [φ̂(x, s)φ̂(x′, s′)]

〉
≡ D(x, s,x′, s′)

where T indicates time ordering.

D depends only on the time
difference s− s′, and it is periodic with period β = 1/T , where T is
temperature. As T → 0, we can take the Fourier transform, and
the D(x,x′, ω) turns out to be a Green’s function for the operator
L = ∇2 − ω2,

∇2D(x,x′, ω)− ω2D(x,x′, ω) = δ(x− x′)
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The Green’s function

Now the quantum stress tensor can be written as〈
Ŝ(x, ω)

〉
= lim

x′→x

(
−∇∇′ + 1

2
Tr(∇∇′) + 1

2
ω2

)
D(x,x′, ω)

and the force integral becomes

Fα = −
∫
Qα

dA

∞∫
−∞

dω

2π

(
−∂n∇′ +

1

2
n∇ · ∇′ + 1

2
nω2

)
D(x,x, ω)
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Summary of the force integral

The force on Qα is

Fα = −
∫
Qα

dA

∞∫
−∞

dω

2π

(
−∂n∇′ +

1

2
n∇ · ∇′ + 1

2
nω2

)
D(x,x, ω)

and we can thus define pressure as

p =

∞∫
−∞

dω

2π

(
−∂n∇′ +

1

2
n∇ · ∇′ + 1

2
nω2

)
D(x,x, ω)

where D is found by solving

∇2D(x,x′, ω)− ω2D(x,x′, ω) = δ(x− x′)
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Boundary conditions

If A is a linear operator and φ̂ satisfies a boundary condition on the
form

Aφ̂(x, s) = 0, x ∈ Q

then similar conditions apply to D,

AD(x,x′, ω) = 0, x ∈ Q
A′D(x,x′, ω) = 0, x′ ∈ Q

For example, with Dirichlet conditions, φ̂(x, s) = 0 so

D(x,x′, ω) = 0, x ∈ Q or x′ ∈ Q

19 / 49
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Integral identity

Let D0(x,x
′′) be the free Green’s function for L, satisfying

LD0(x,x
′′) = δ(x− x′′), D0 → 0 when |x| → ∞

For x′,x′′ ∈ V0, Green’s second identity gives∫
V0

dξ
[
D(ξ,x′)LD0(ξ,x

′′)−D0(ξ,x
′′)LD(ξ,x′)

]
=−

∫
Q
dξ
[
D(ξ,x′)∂nD0(ξ,x

′′)−D0(ξ,x
′′)∂nD(ξ,x′)

]
which implies that D satisfies the integral identity

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξ
[
D0(ξ,x

′′)∂nD(ξ,x′)

−D(ξ,x′)∂nD0(ξ,x
′′)
]

21 / 49



Integral identity

Let D0(x,x
′′) be the free Green’s function for L, satisfying

LD0(x,x
′′) = δ(x− x′′), D0 → 0 when |x| → ∞

For x′,x′′ ∈ V0, Green’s second identity gives∫
V0

dξ
[
D(ξ,x′)LD0(ξ,x

′′)−D0(ξ,x
′′)LD(ξ,x′)

]
=−

∫
Q
dξ
[
D(ξ,x′)∂nD0(ξ,x

′′)−D0(ξ,x
′′)∂nD(ξ,x′)

]

which implies that D satisfies the integral identity

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξ
[
D0(ξ,x

′′)∂nD(ξ,x′)

−D(ξ,x′)∂nD0(ξ,x
′′)
]

21 / 49



Integral identity

Let D0(x,x
′′) be the free Green’s function for L, satisfying

LD0(x,x
′′) = δ(x− x′′), D0 → 0 when |x| → ∞

For x′,x′′ ∈ V0, Green’s second identity gives∫
V0

dξ
[
D(ξ,x′)LD0(ξ,x

′′)−D0(ξ,x
′′)LD(ξ,x′)

]
=−

∫
Q
dξ
[
D(ξ,x′)∂nD0(ξ,x

′′)−D0(ξ,x
′′)∂nD(ξ,x′)

]
which implies that D satisfies the integral identity

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξ
[
D0(ξ,x

′′)∂nD(ξ,x′)

−D(ξ,x′)∂nD0(ξ,x
′′)
]

21 / 49



Dirichlet boundary conditions

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξ
[
D0(ξ,x

′′)∂nD(ξ,x′)

−D(ξ,x′)∂nD0(ξ,x
′′)
]

Consider Dirichlet conditions, D(x′,x′′) = 0 when x′ ∈ Q or
x′′ ∈ Q. With these conditions, the force integral becomes

Fα =
1

2

∫
Qα

dA

∞∫
−∞

dω

2π
∂nn′D(x,x, ω)

and the integral identity simplifies to

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξD0(ξ,x

′′)∂nD(ξ,x′)

22 / 49



Dirichlet boundary conditions - Renormalization

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξD0(ξ,x

′′)∂nD(ξ,x′)

Let xα be a point on Qα, and let x′′ → xα. We get

−D0(x
′,xα) =

∫
Q
dξD0(ξ,xα)∂nD(ξ,x′)

∫
Q
dξ =

∫
Cε

dξ + PVxα

∫
Q
dξ

−D0(x
′,xα) = PVxα

∫
Q
dξD0(ξ,xα)∂nD(ξ,x′)
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Dirichlet boundary conditions - Renormalization

−D0(x
′,xα) = PVxα

∫
Q
dξD0(ξ,xα)∂nD(ξ,x′)

Next we let x′ → xβ ∈ Qβ . This causes a problem if xα = xβ .

To solve this, introduce the self-pressure Dβ , corresponding to the
pressure we would get if Qβ had been the only object. That is, it
satisfies the equation

−D0(x
′,xα) = PVxα

∫
Qβ

dξD0(ξ,xα)∂nDβ(ξ,x
′)
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Dirichlet boundary conditions - The self pressure

Now let

D(xα,xβ) =

{
D(xα,xβ)−Dβ(xα,xβ), α = β,

D(xα,xβ), α 6= β

be the regularized pressure. When subtracting the self-pressure, the
D0 terms cancel, so taking the limit x′ → xβ is no problem.

By the way, what we eventually are interested in is ∂nn′D, not
∂nD. In order to acquire the normal derivative, we must take the
gradient ∇x′ before letting x′ go to the boundary.
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Dirichlet boundary conditions - The boundary integral
problem

The boundary integral problem for D becomes

V (xα,xβ) + PVxα

∫
Q
dξD0(ξ,xα)∂nn′D(ξ,xβ) = 0

where

V (xα,xβ) =− ∂nD0(xβ,xα)

− PVxα
∫
Qβ

dξD0(ξ,xα)∂nn′Dβ(ξ,xβ)

when xα and xβ are on different surfaces, and it is zero otherwise.
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Neumann boundary conditions in 2D

D(x′′,x′) = D0(x
′,x′′) +

∫
Q
dξ
[
D0(ξ,x

′′)∂nD(ξ,x′)

−D(ξ,x′)∂nD0(ξ,x
′′)
]

Next consider Neumann conditions, ∂n′D(x′,x′′) = 0 when x′ ∈ Q
and ∂n′′D(x′,x′′) = 0 when x′′ ∈ Q. In two dimensions, the force
integral becomes

Fα = −1

2

∫
Qα

dAn

∞∫
−∞

dω

2π

(
∂tt′ + ω2

)
D(x,x, ω)

and the boundary identity becomes

D(x′′,x′) = D0(x
′,x′′)−

∫
Q
dξD(ξ,x′)∂nD0(ξ,x

′′)

27 / 49



Neumann boundary conditions in 2D - Renormalization

D(x′′,x′) = D0(x
′,x′′)−

∫
Q
dξD(ξ,x′)∂nD0(ξ,x

′′)

Like before, we first let x′′ → xα ∈ Qα.

Now the integral over Cε
gives a contribution

−
∫
Cε

dξD(ξ,x′)∂nD0(ξ,x
′′)

≈−D(xα,x
′)

∫
Cε

dξ ∂nD0(ξ,x
′′)→ 1

2
D(xα,x

′)

The integral over the remainder of the curve becomes a principal
value integral,

1

2
D(xα,x

′) = D0(x
′,xα)− PVxα

∫
Q
dξD(ξ,x′)∂nD0(ξ,xα)
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Neumann boundary conditions in 2D - Renormalization

1

2
D(xα,x

′) = D0(x
′,xα)− PVxα

∫
Q
dξD(ξ,x′)∂nD0(ξ,xα)

When letting x′ → xβ ∈ Qβ , we get a problem if xα = xβ ,
because D0 is singular. As before, we introduce the self-pressure
Dβ and the regularized pressure D.

1

2
Dβ(xα,xβ) = D0(xβ,xα)−PVxα

∫
Qβ

dξDβ(ξ,xβ)∂nD0(ξ,xα)
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Neumann boundary conditions in 2D - The boundary
integral problem

With this, we get

1

2
D(xα,xβ) = V (xα,xβ)− PVxα

∫
Q
dξD(ξ,xβ)∂nD0(ξ,xα)

where

V (xα,xβ) = D0(xα,xβ)−
∫
Qβ

dξDβ(ξ,xβ)∂nD0(ξ,xα)

when xα and xβ are on different objects, and V is zero otherwise.
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Discretization - Dirichlet boundary conditions in 2D

Considering Dirichlet boundary conditions, we have the equation

PVxα

∫
Q
dξD0(ξ,xα)∂nn′D(ξ,xβ) + V (xβ,xα) = 0

So now the question is, how do we apply numerical methods to
solve it?
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Discretization
Partition each object Qγ into small pieces Ikγ , for k = 1, . . . , N .

The equation becomes

−V (xjβ,x
i
α) =

r∑
γ=1

N∑
k=1

PVxiα

∫
Ikγ

dξD0(ξ,x
i
α)∂nn′D(ξ,xjβ)

≈
r∑

γ=1

N∑
k=1

|Ikγ |D0(x
k
γ ,x

i
α)∂nn′D(xkγ ,x

j
β)
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Results - Parallel plates in 2D
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Results - Concentric circles in 2D

Inner circle Outer circle
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Results - Parallel plates in 3D
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Results - Parallel plates in 3D
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Results - Concentric spheres in 3D

Outer sphere
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Interactions

In D(x,x′), we can think of x as the observation point and x′ as
the source location. Then D(x,x′) tells us about the contribution
of point x′ to the Casimir effect at point x.
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Source location symmetries

If g is an isometry that leaves the surfaces invariant and for which
x is a fixed point, i.e. g(x) = x, it can be shown that

D(x, g(x′)) = D(x,x′),

then this symmetry can be utilized when calculating D(x,x′).
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Observation point symmetries

If h is an isometry that leave the surfaces invariant, then we can
show that

D(h(x),x′) = D(x, h−1(x′)),

and we can utilize these kind of symmetries.
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Dirichlet boundary conditions

I The method has given good results for Dirichlet boundary
conditions for both two and three dimensions

I One problem is that the method gives 1/2 the answer
predicted by the exact solutions or the functional integral
method, both for 2D and 3D

I Source test shows that this is not a problem with the
renormalization, so it seems a factor 2 is missing in the force
integral

44 / 49



Dirichlet boundary conditions

I The method has given good results for Dirichlet boundary
conditions for both two and three dimensions

I One problem is that the method gives 1/2 the answer
predicted by the exact solutions or the functional integral
method, both for 2D and 3D

I Source test shows that this is not a problem with the
renormalization, so it seems a factor 2 is missing in the force
integral

44 / 49



Dirichlet boundary conditions

I The method has given good results for Dirichlet boundary
conditions for both two and three dimensions

I One problem is that the method gives 1/2 the answer
predicted by the exact solutions or the functional integral
method, both for 2D and 3D

I Source test shows that this is not a problem with the
renormalization, so it seems a factor 2 is missing in the force
integral

44 / 49



Dirichlet boundary conditions

I The method has given good results for Dirichlet boundary
conditions for both two and three dimensions

I One problem is that the method gives 1/2 the answer
predicted by the exact solutions or the functional integral
method, both for 2D and 3D

I Source test shows that this is not a problem with the
renormalization, so it seems a factor 2 is missing in the force
integral

44 / 49



Neumann boundary conditions

I We have not been able to achieve results that correspond to
the exact solutions

I Source tests proves that the renormalization is correct, except
for the self-pressure

I Possibly a problem with how we are handling the ∂tt′D part of
the force integrand

I Other methods also have problems with Neumann conditions
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Future work

I Understand why the Dirichlet case gives a factor 1/2
I Show that the method gives correct results under Neumann

boundary conditions
I Develop the method for vector fields and Maxwell’s equations
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Thank you for your attention!
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