Calculating the Casimir effect using the boundary
element method

Marius Utheim, Isak Kilen, Karl @yvind Mikalsen, Per Jakobsen

UiT - The Arctic University of Norway

16th MCnet meeting - Karlsruhe, 2017

1/49



Goals

1. Give a brief introduction to the Casimir force
2. Show some examples of renormalization

3. Explain how to numerically solve integral equations
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Existing methods

» Mode summation
» Theoretically useful - gold standard
» Applicable only to very specific configurations
» Proximity force approximation
» Approximates curves as sets of small parallel plates
» Only applicable to small separations
» Finite difference time domain (lattice method)

» Well-tested in electromagnetism

» Applicable to complex geometries

» Discretizes the whole space, which is computationally
expensive

» Functional integral method

» Expresses the force in terms of a matrix determinant derived
from a functional integral

» Cumbersome and theoretically shaky

» Efficient, but we can't parallelize it
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The boundary integral method

Advantages:
» Boundary integral methods are well known

» The expression for the force is relatively simple

» Renormalization is geometry-independent

» Gives the pressure at each point

» Requires solving a system of linear equations, which is trivially
parallelizable

» Simplifications from symmetries can be explicitly implemented
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Mode summation
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Underlying equations

The free massless scalar field is determined by the Lagrangian

1
L= 577MV8“¢ 0o

which obeys the Euler-Lagrange equation,

oL oL
3~ (50,97) 0
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Underlying equations

The free massless scalar field is determined by the Lagrangian

1
L= 577uyau¢ 0o

which obeys the Euler-Lagrange equation,

oL oL
2 O (6(%)) =0

This is equivalent to the wave equation,

V2 — ¢y =0
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Energy of the free scalar field

Vi — =0

Taking the Fourier transform in time,

V26 + w?p =0

9/49



Energy of the free scalar field

Vi — =0

Taking the Fourier transform in time,
V24w’ =0

With boundary conditions, only a set of resonance frequencies {wy, }
are allowed. The energy is given by

1
E:2;wn

This is the Casimir energy.
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Parallel plates

As an example, let's
consider parallel plates in
one-dimensional space
with Dirichlet boundary

conditions.
Qb:mv + WQd) =0 ; V%
4(0) = 6(a) = 0 7
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Parallel plates

As an example, let's
consider parallel plates in
one-dimensional space
with Dirichlet boundary

conditions. ‘ 7
$(0) = ¢(a) =0 7
General solutions are given by
¢(x) = Acoswpx + Bsinwyzx, Wy = nm
a
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Parallel plates

As an example, let's

. . ///,/'//
cons@er pa.raIIeI plates in 744
one-dimensional space 0

. . . /
with Dirichlet boundary - o
conditions. %//

/ /
2 // /
¢xw +w d) =0 IS
Vo Vs //
/ /s

$(0) = ¢(a) =0 o

General solutions are given by

. nm
¢(x) = Acoswpx + Bsinwyzx, Wy, = —
a

This presents a problem, because

[e.e]

1 nmw

n=1
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Renormalization

Approaches to renormalization

» Separate the energy into two parts E(x,t) = Ex + E(x, 1),
where £ is finite and E is constant. Note that VE = VE&.

» Separate into energy from mutual interactions and
self-interactions. Only mutual interactions can give a net force.

» Mathematical tools such as analytic continuation with zeta
renormalization or Ramanujan summation.

> 1
%Zn: 13
n=1
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Outline

An expression for the Casimir force
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Configuration
We consider a set of compact objects V7, ..., V, with boundaries

Q1,...,Q,. Let V) be the exterior of all objects, and denote by Q
the union of all surfaces.

—
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The massless scalar field

The free massless scalar field is determined by the Lagrangian

1
L= 50" 0,00,
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The massless scalar field

The free massless scalar field is determined by the Lagrangian

1
L= 50" 0,00,

The stress-energy tensor:

oL
0(9ud)

w

" —ntL
Conservation laws:
0,T* =0
8tp +V-5=0
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The massless scalar field

The free massless scalar field is determined by the Lagrangian

1
L= 50" 0,00,

The stress-energy tensor:

oL
9(0u)

w

" —ntL
Conservation laws:
0,T* =0
8tp +V-5=0

Fa:at/ de(az,t):—j{ dA - S(x,t)
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Quantizing the stress tensor
The stress tensor is given by

S(x,t) = —VoVe + %Tr(VgéVqﬁ)I - %@%1
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Quantizing the stress tensor
The stress tensor is given by
1 1,
S(x,t) = -VoVo + §Tr(V¢V¢)I — §¢tl
To be able to quantize this, we use point splitting

1 1
S(x,t) = a:l’li)n:c (—VV/ + §Tr(VV’) — 28t8t/) o(x, t)p(x', 1)
t'—t

Then we can quantize the field and get the quantum stress tensor

A 1 1 1 - N
S(x,t) = wlfifw <—VV' + §Tr(VV’) — 28t8t/> 5{qb(:c,t)qb(:c’,t')},
t—t

where {-,-} is the anti-commutator.
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The Green's function

After a Wick rotation s = it, we can show that
1 n n n in o
5 (18@ 9)d@.)}) = (Tlo(@, 5)b(',s)]) = D(w,5,a',5')

where T indicates time ordering.

16 /49



The Green's function

After a Wick rotation s = it, we can show that

1/ - . . .

5 (18@ 9)d@.)}) = (Tlo(@, 5)b(',s)]) = D(w,5,a',5')
where T indicates time ordering. D depends only on the time
difference s — &', and it is periodic with period 8 = 1/T', where T' is
temperature. As T" — 0, we can take the Fourier transform, and

the D(x,x’,w) turns out to be a Green's function for the operator
L=V?-u?

ViD(z, 2’ w) — w?D(z, 2, w) = 6(x — 2')
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The Green's function

Now the quantum stress tensor can be written as

N 1
<S(m,w)> = lim (—VV' - %Tr(vvl) - 2w2> D(z, ', w)

x' —x

and the force integral becomes

00 1 1
F, = _/ dA / e —0pV' + 5V -V + -no’ | D(x, 2, w)
. 27 2 2
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Summary of the force integral

The force on Q, is

Fa = _/ dA / dﬂ <_anvl + 7nv : V, + nw2> D(w7 :E,(d)
X 2 2 2

and we can thus define pressure as

Oodw , 1 , 1,
= — | —On — . — D7’
D /2F<8V+2nv V—I—znw) (x,z,w)

—00
where D is found by solving

V2D(z,x' ,w) — w?D(x,x',w) = §(x — x')
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Boundary conditions

If A is a linear operator and ¢ satisfies a boundary condition on the
form

Ad(x, s) =0, xeQR

then similar conditions apply to D,

AD(z,z',w) =0, T eEQ
A'D(z,x',w) =0, ' ecqQ

For example, with Dirichlet conditions, ¢(x,s) = 0 so

D(z,z',w) =0, zeQorx €Q
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Outline

Boundary integral problem
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Integral identity

Let Do(z, ") be the free Green's function for L, satisfying

LDy(z,z") = §(x — x"), Dy — 0 when |z| — oo
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Integral identity

Let Do(z, ") be the free Green's function for L, satisfying
LDy(z,z") = §(x — x"), Dy — 0 when |z| — oo

For o', 2" € Vj, Green's second identity gives
| dé [Die.a)LDo(g.a") - Do(e. ") LD(E @)
Vo

- /Q dg [D(€, /)00 Do (£, ") — Do(€, 2")0n D(E, 2]
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Integral identity

Let Do(z, ") be the free Green's function for L, satisfying
LDy(z,z") = §(x — x"), Dy — 0 when |z| — oo

For o', 2" € Vj, Green's second identity gives
| € D2 LDv(e o) - Dufé.a")LD(E ')
0
=~ [ € [D(E 2 DoE.a") ~ D€, aonDLE )]
which implies that D satisfies the integral identity

D(z",x') = Do(x', x") —|—/ dé[Do(&, 2" 0D (€, ')

Q
— D(&,2')8n, Do (&, &")]
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Dirichlet boundary conditions

D(z",x') = Do(z', x") —|—/Qd£ [DO(E,m”)E)nD(E,m')
- D(E? w/)a’nDO(ga :EH)]

Consider Dirichlet conditions, D(z’, ") = 0 when ' € Q or
" € Q. With these conditions, the force integral becomes

/ dA/ Onn D(x, T, w)

and the integral identity simplifies to

D(z",x') = Do(z', x") —|—/Qd£ Do(&,2")0,D (&, x")
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Dirichlet boundary conditions - Renormalization

D(",a') = Do(e’,2") + /Q d¢ Do(€, ")0nD (€, ')

Let ¢, be a point on Q,, and let " — x,. We get

Dol a) = /Q 4€ Do (€, 20)OnD(E,2)
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Dirichlet boundary conditions - Renormalization

D(",a') = Do(e’,2") + /Q d¢ Do(€, ")0nD (€, ')

Let ¢, be a point on Q,, and let " — x,. We get

Dol a) = /Q 4€ Do (€, 20)OnD(E,2)

/ngz/csngrPVma/ng

_Do(@, @) = PVa, /Q d€ Do (€, 20)0n D(E, ')
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Dirichlet boundary conditions - Renormalization

_Do(@,wa) = PVa, /Q d€ Do (€, 2a)0nD (£, o)

Next we let ' — @3 € Q. This causes a problem if z, = x3.
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Dirichlet boundary conditions - Renormalization

_Do(@,wa) = PVa, /Q d€ Do (€, 2a)0nD (£, o)

Next we let ' — @3 € Q. This causes a problem if z, = x3.

To solve this, introduce the self-pressure Dg, corresponding to the
pressure we would get if Qg had been the only object. That is, it
satisfies the equation

Dy(a, ma) = PVa, /Q d€ Do (€, 0)0n Dy (€, )
B
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Dirichlet boundary conditions - The self pressure

Now let

D(m T ): D<xaaxﬁ)_D5(waaw,3)7 a:ﬁ,
oo D(mowmﬁ)v Ol#ﬁ

be the regularized pressure. When subtracting the self-pressure, the
Dy terms cancel, so taking the limit @’ — @3 is no problem.

25 /49



Dirichlet boundary conditions - The self pressure

Now let

D<xa7xﬁ)_D,3(wOmwﬁ)a Oé:ﬁ?

Dleas 20} = {D@ca,wﬁ), oy

be the regularized pressure. When subtracting the self-pressure, the
Dy terms cancel, so taking the limit @’ — @3 is no problem.

By the way, what we eventually are interested in is Oy, D, not
OnD. In order to acquire the normal derivative, we must take the
gradient V. before letting ' go to the boundary.
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Dirichlet boundary conditions - The boundary integral
problem

The boundary integral problem for D becomes
V(o) + PVa, | d&Dol€,@a)OnmD(E ) =0
Q

where
V(a,xg) = — OnDo(x8, T0)

—PV;BQ/ dSDO(E,wQ)ann’D,B(Samﬁ)
Qs

when x, and x3 are on different surfaces, and it is zero otherwise.
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Neumann boundary conditions in 2D

D(z",x") = Do(z', ") + /Qd£ [Do(&,2")0nD(€,x')
- D(S? m,)anDO(Ev m”)]

Next consider Neumann conditions, 9,y D (', ") = 0 when =’ € Q
and O,»D(2’, ") = 0 when ” € Q. In two dimensions, the force
integral becomes

1

Oodw
Fa:2/QadAn/27T(8tt/ +w2>D(m,fL’,UJ)

and the boundary identity becomes

D(z", ') = Do(z', 2") — /Qd§ D(&,2")0,Do(&,2")
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Neumann boundary conditions in 2D - Renormalization

D(w”7 *’B/) = DO(CU/7 w”) - /QdﬁD(£7 w/)anDO(Ea SL'H)

Like before, we first let " — x, € Q..
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Neumann boundary conditions in 2D - Renormalization

D(w//7 *’1:/) = DO(wlv w”) - Lng(gv w/)a’nDO(Ea .’131/)

Like before, we first let "/ — x, € Q.. Now the integral over C.
gives a contribution

- / d€ D(€, 2')0n Do, 2"

Ce

1
<~ D(ea#!) [ d€onDo(E ") = 5 Dwa.)
Ce

The integral over the remainder of the curve becomes a principal
value integral,

L D(@a, @) = Do, za) — PVa, / d¢ D(€,2')0n Do (€, x0)
2 Q

28 /49



Neumann boundary conditions in 2D - Renormalization

1D(ﬂ?m x') = Do(x', xo) — PVwa/ d¢ D(&,x")0nDo(&, )
2 Q

When letting ' — xg € Qp, we get a problem if xz, = xg,
because Dy is singular. As before, we introduce the self-pressure
Dy and the regularized pressure D.

3Di(@a:@) = Do(@s @) ~ PVa, | d€ Dy(€,5)0nDo(€, z0)
Qp
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Neumann boundary conditions in 2D - The boundary
integral problem

With this, we get
1
5 P(@a, 25) = V(@a, 25) = PVa, /QdE D(&, x3)0nDo(€, xa)

where

V(waaw,ﬁ) = D()((Ea,w/j) _/Q dE Dﬁ(€7xﬁ)anD0(€awa)
B

when x, and x are on different objects, and V' is zero otherwise.
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Outline

Numerical implementation
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Discretization - Dirichlet boundary conditions in 2D

Considering Dirichlet boundary conditions, we have the equation
PV, / d€ Do(&, :L'a)annfD(E, :135) -+ V(CBQ, :Ba) =0
Q

So now the question is, how do we apply numerical methods to
solve it?
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Discretization
Partition each object @), into small pieces IF fork=1,...,N.
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Discretization
Partition each object @), into small pieces L’f, fork=1,...,N.

The equation becomes

Yy / 4€ Do(€, @})0m D€, 1)

v=1k=1

~ ZZ‘IHDO ) nn’D( 5)

v=1k=1
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Results - Parallel plates in 2D
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Results - Parallel plates in 2D
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Results - Concentric circles in 2D
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Results - Concentric circles in 2D
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Results - Parallel plates in 3D
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Results - Parallel plates in 3D
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Results - Concentric spheres in 3D
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Results - Concentric spheres in 3D
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Results - Concentric spheres in 3D
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Outline

Symmetry reduction
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Interactions

In D(x,x'), we can think of x as the observation point and o’ as
the source location. Then D(x, a’) tells us about the contribution
of point @’ to the Casimir effect at point x.
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Source location symmetries

«40>» «F» « =)»

« =)

DA
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Source location symmetries

If g is an isometry that leaves the surfaces invariant and for which
x is a fixed point, i.e. g(x) = @, it can be shown that

D(z,g(x')) = D(z, ),

then this symmetry can be utilized when calculating D(z, «’).
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Observation point symmetries
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Observation point symmetries

If h is an isometry that leave the surfaces invariant, then we can
show that
D(h(z),x') = D(z,h~(z')),

and we can utilize these kind of symmetries.
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Discussion
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Dirichlet boundary conditions

» The method has given good results for Dirichlet boundary
conditions for both two and three dimensions

» One problem is that the method gives 1/2 the answer
predicted by the exact solutions or the functional integral
method, both for 2D and 3D

» Source test shows that this is not a problem with the
renormalization, so it seems a factor 2 is missing in the force
integral

44 /49
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Neumann boundary conditions

» We have not been able to achieve results that correspond to
the exact solutions

» Source tests proves that the renormalization is correct, except
for the self-pressure

» Possibly a problem with how we are handling the Oy D part of
the force integrand

» Other methods also have problems with Neumann conditions
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Future work

» Understand why the Dirichlet case gives a factor 1/2

» Show that the method gives correct results under Neumann
boundary conditions

» Develop the method for vector fields and Maxwell’s equations
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Thank you for your attention!
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