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Systematic variations provided in form of event weights and
Incorporated in a statistical model as constraints

L (N,µ, {θj}) =
Nbins∏
i=1

P
(
ni

∣∣µ si ({θj})︸ ︷︷ ︸+ bi ({θj})︸ ︷︷ ︸
Impact of θj on signal and background models

)
M systematic uncertainties

as nuisance parameters︷ ︸︸ ︷
M∏
j=1

C
(
θj
∣∣µθj , σθj

)
,

where
P is the Poisson distribution
µ is the signal strength
si, bi the expected number of signal and background events and
ni number of measured events in bin i

Target: Extraction of µ ± σµ
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Statistical inference and systematic uncertainties in HEP
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Training task
Separation of signal and background

Application
Propagation of nominal and shifted
samples through trained NN

Inference
Extraction of µ± σµ

from nominal and shifted NN outputs

CE training is not aware of systematic variations!

→ suboptimal training

Structure of NN-based analyses workflows (in HEP)



Keep the application and inference step

Change the training step by replacing

Training objective CE → Analysis objective σµ

Incorporate systematic variations in
calculation of σµ via

Event weights
Shifted data sets, propagated through NN
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Uncertainty aware training



Starting with a binned Likelihood L (N,µ, {θj}) where systematic uncertainties for every bin i can be
incorporated as

si = si0 +

M∑
j

θjsishift
, bi = bi0 +

M∑
j

θjbishift

assuming an ideal case by
Obtain nominal value from Asimov data set: ni = µsi + bi , µ = 1 and
Applying no pull on the nuisance parameters θj = 0 ∀ j

The estimation of σµ is obtained from the Fisher information:

Fij = E

[(
∂2

∂xi∂xj
(−lnL)

)
xi,xj=µ,{θj}

]
Asimov
= (Hess (−lnL))ij ⇒ (Fij)

−1
= Vij

Where V11 = σ2
µ contains statistical and systematic uncertainties of µ
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New Loss: σµ
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L (N,µ, {θj}) is calculated on binned data

NN backpropagation requires each step in the calculation of of
the loss function to be differentiable

Histogram gradient, described by delta functions at bin edges
lacks continuity.

Replacement of histogram gradient necessary

Previously proposed gradient replacement [1]:
Gaussian derivative for each bin

Additional introduction of warm-up phase based on BCE
Statistical part of σµ can be reduced by a spatial
separation of signal and background

(Un)differentiable histograms
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Collapse of NN output function into 1-3 bins
Independent from concrete warm-up
More pronounced feature for more complicated tasks.

Collapse is not improving the loss

→ Unstable training, convergence is not ensured
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Restrict Gaussian derivative to the respective bin

→ Removes long range effects across bins, which
lead to low gradient amplitudes everywhere
except the outer most bins

→ ”Movement directive within a bin” rather than a
Gaussian ”smearing of a bin”

Further adjustments to the training procedure:
Increase of learning rate
Change optimizer from Adam to NAdam

Improved custom histogram gradient
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Reduced event aggregation into fewer bins

Improved training convergence
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Signal (background) modeled as 2D - Gaussians with 105

samples each, reweighted to 50 (1000) events for the final
inference

Systematic variation: x2 ± 1 (dashed lines in Figure)

Test (training, validation) data sets: 2 · 105 (105, 105)
independent events

Fully connected feed forward NN
Input: x1, x2

One hidden layer with 100 nodes and ReLU activation
One output node with sigmoid activation

Full-batch training, 1000 epochs patience on validation loss
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Training on BCE: Spatial separation
of processes in value space of NN
output leads to reduction of
statistical part of σµ

Effect of systematic variation is
clearly visible (as expected)

Training on σµ reduces the
combined uncertainty by ≈ 20%
relative to BCE based training

BCE warm-up improves the
process separation in cases of
dominating statistical uncertainty
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Assignment of signal/background processes to
(different) classes

Realization use multiple output nodes

Activation function in output layer: Softmax

→ Probabilistic interpretation of the likelihood
to find a corresponding event in a given
class when using CE loss

Modifications to final inference
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L (N,µ, {θ}) =
C∏

class c=1

N∏
bin i=1

P

ni

∣∣ P∑
k=1

µ
k
s
i, k

({θj}) +
P∑

k′=1

b
i, k′ ({θj})

 M∏
j=1

C
(
θj
∣∣µθj , σθj

)

Idea of multi-class classification



Introduction of a second
background at (−1, 2)
signal at (0.5, 3)

signal (background) processes are reweighted
to 100 (1000) events each

Used uncertainties
Background 1: x2 ± 1 (as before)
Background 2: x1 ± 1
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Expectation: Minor adjustments after CE warm-up to address systematic uncertainties, but:

Classes act only as additional bins

No penalty for misclassification in the training on σµ and final inference

Predefined classes are not used during training as intended

→ With increasing problem complexity: Empty classes and misclassified events within a class occurs
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Not all NN classification information is used for loss
calculation

Ansatz 1:
Use only one ”class”

Change (back) to one output node with Sigmoid
activation
Increase number of bins

Separation of signal processes as due to
∑

i σµi

minimization

→ Creation of regions with accumulated signal
processes
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Ansatz 2:
Preservation of class assignments by performing weight optimization in constrained phase space

→ Output nodes activation function: Sigmoid
→ Construction of a loss with a penalty term

Loss = σµ + λ (LBCE − L′
BCE)

where

L′
BCE is the BCE loss as the end of the

warm-up phase,

LBCE the BCE loss of the current epoch and

λ a learnable parameter in case of
LBCE − L′

BCE > 0 and 0 otherwise

→ Constraint preserves the initial classification
during the σµ minimization 0 0.5 1|0 0.5 1|0 0.5 1|0 0.5 1
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One class:

No additional hyper parameters

Worse results compared to constrained
approach

With increasing number of signal
processes separation worsens

Constrained loss approach:

Provides stable and better results

Separation still possible also with/despite
of increasing number of processes

Introduction of additional
hyperparameters during training, which
are not present in the final inference
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Goal: Differential measurements of Higgs boson production

H → ττ : Highest branching ratio (6.3%) after b̄b but with less background contributions

NN output is used for the final inference

Restriction for this study:

Final decay mode: τhτh, µτh, eτh, eµ

Data set: 2016, 2017, 2018

Using 86 systmatic variations in form of event weights (no jer, jes...)
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Application to Standard Model H → ττ analysis [3]
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Combination of all background and signal
processes correspondingly (inclusive measurement)

All uncertainties as shape uncertainty

Stable and converging training - comparable to toy
study
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uncertainty aware training
reduces σµ by ≈ 25%

Use of less uncertainties (i.e. 30 in training)
already leads to similar reduction in σµ

→ Potential reduction in computing time
(≈ 4 h →≈ 1 h) training time
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qqh and ggh Higgs boson production mechanisms as signal processes

Separation of qqh events as a result of statistical uncertainty reduction (dominant uncertainty), larger
confusion of ggh events with background processes
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Both approaches:

Allow for differential measurements of the signal strength of selected Higgs boson production modes

Are able so separate qqh better than classic CE-training based on the same NN architecture

Avoid the problem of empty classes.

A constraint on σµ loss improves the result at the cost of introducing additional hyperparameters, which are not
adressed or motivated in the final inference
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Outlook
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Improved stability during the training on σµ by modifying the custom histogram gradient

Extension to uncertainty-aware multi-class classification

Successfull application on a subset of the SM H → ττ analysis [3]

Apply to the full H → ττ analysis with more differentiable Higgs boson production process

Incorporation of a method to avoid the use of histograms for uncertainty calculation

Adaption of statistical inference to the multi-class classification based on uncertainty aware training

Summary
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Backup
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H → ττ Binary: Reduced number of NP
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H → ττ Used training variables
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Applied Change:

increased learning rate

Adam → NAdam

A change in σµ only occurs
when minimum one event

change the bin

Impact of Further adjustments to the training procedure
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Loss evolution: One class and Constrained-loss
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H → ττ Multi-class classification:
CE benchmark, exemplary shift
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List of used systematic uncertainties 1/5
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CMS ff w highdR njet1 morphed stat et 2017

CMS ff w highdR njet0 morphed stat et 2017

Classic CE training

Uncertainty aware training (86 NP)

−1σ Impact

+1σ Impact µ = 1.00+0.62
−0.60 → µ = 1.00+0.47

−0.44

+86%

−81%

−62%

−62%

−28%

−23%

−76%

−4%

−44%

−71%

−45%

+13%

−16%

−96%

−6%

−41%

−90%

−91%

−68%

−64%
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−0.02 −0.01 0.00 0.01 0.02
∆µ̂

CMS eff xtrigger t emb et dm11 2017

THU qqH JET01

CMS prefiring

THU ggH VBF3j

CMS htt zjXsec

CMS eff t 35 40 2017

THU qqH 25

CMS ff qcd mc et 2017

CMS htt ggH scale 1jet lowpt

CMS ff qcd njet2 morphed stat et 2017

CMS eff t 30 35 2017

CMS eff xtrigger t emb et dm0 2017

pdf Higgs qqbar

CMS htt ggH scale 0jet

CMS eff trigger et 2017

CMS eff xtrigger t emb et dm1 2017

CMS ff w highdR njet2 morphed stat et 2017

CMS eff xtrigger t emb et dm10 2017

CMS eff t emb 30 35 2017

CMS htt ttbarShape

Classic CE training

Uncertainty aware training (86 NP)

−1σ Impact

+1σ Impact µ = 1.00+0.62
−0.60 → µ = 1.00+0.47

−0.44

+75%

+200%

+176%

+294%

+10%

−23%

+326%

+25%

+59%

+153%

−9%

−13%

+142%

−15%

−37%

−89%

−24%

−36%

+243%

−94%
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−0.0008 −0.0004 0.0000 0.0004 0.0008
∆µ̂

CMS htt ggH scale highpt

THU qqH PTH200

CMS eff xtrigger t et dm1 2017

CMS eff xtrigger t et dm0 2017

THU qqH Mjj1500

THU qqH Mjj1000

THU qqH Mjj120

CMS eff xtrigger t et dm11 2017

CMS eff xtrigger t et dm10 2017

THU qqH Mjj700

THU qqH Mjj60

CMS htt vbf scale highmjj highpt

CMS htt ggH scale 2jet lowpt

CMS eff xtrigger l et 2017

CMS htt vbf scale highmjj lowpt

CMS htt vbf scale lowmjj

THU qqH Mjj350

THU qqH TOT

CMS htt vbf scale 1jet

CMS htt ggH scale vbf

Classic CE training

Uncertainty aware training (86 NP)

−1σ Impact

+1σ Impact µ = 1.00+0.62
−0.60 → µ = 1.00+0.47

−0.44

+459%

+468%

+174%

−2%

+563%

+676%

+833%

−39%

+30%

+646%

+831%

+230%

+192%

−27%

+91%

+5%

+304%

+118%

+15%

+133%
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−2 −1 0 1 2
∆µ̂ ×10−5

CMS eff t emb 1000 inf 2017

CMS eff t 1000 inf 2017

CMS eff t 500 1000 2017

CMS htt vbf scale 0jet

CMS eff t emb 500 1000 2017

CMS htt ggH scale very highpt

Classic CE training

Uncertainty aware training (86 NP)

−1σ Impact

+1σ Impact µ = 1.00+0.62
−0.60 → µ = 1.00+0.47

−0.44

−10%

−10%

−10%

−1%

+1%

+34%
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