
Neural Network

Building Blocks

Johannes Erdmann
RWTH Aachen University

Deep Learning Basics Train-the-Trainer Workshop
February 7-8, 2023

Garching

[T
ho

m
as

 E
ak

in
s,

Pu
bl

ic
 D

om
ai

n]

Artificial Intelligence

2

• Numerous AI applications in our every-day lives

AI

Artificial Intelligence

2

• Numerous AI applications in our every-day lives

AI

[P
ub

lic
 D

om
ai

n
D

ed
ic

at
io

n]

a photograph of an astronaut riding a horse

[P
ub

lic
 D

om
ai

n]

• Machine learning is enabling fascinating capabilities

• Most recent examples:

 ChatGPT Stable Diffusion
ML

DL

Machine Learning

3

• Data + Task + “a mathematical formulation of what means ‘better’ ” *

 (such as the number of type-1 and type-2 errors in a classification task)

• Optimization of the model parameters on the data

 = “Training” (aka the machine ‘learns’)
Task

Data

* often called a “performance measure”

Machine Learning

3

• Data + Task + “a mathematical formulation of what means ‘better’ ” *

 (such as the number of type-1 and type-2 errors in a classification task)

• Optimization of the model parameters on the data

 = “Training” (aka the machine ‘learns’)
Task

Data

Metric(s)

* often called a “performance measure”

Machine Learning

3

• Data + Task + “a mathematical formulation of what means ‘better’ ” *

 (such as the number of type-1 and type-2 errors in a classification task)

• Optimization of the model parameters on the data

 = “Training” (aka the machine ‘learns’)
Task

Data

Metric(s)

Loss
function

Model with
parameters

Model

Output
Input

Data

* often called a “performance measure”

Machine Learning

3

• Data + Task + “a mathematical formulation of what means ‘better’ ” *

 (such as the number of type-1 and type-2 errors in a classification task)

• Optimization of the model parameters on the data

 = “Training” (aka the machine ‘learns’)
Task

Data

Metric(s)

Loss
function

Model with
parameters

Model

Output
Input

Data

non-trainable parameters

* often called a “performance measure”

Model

Output

Training (Parameter Optimization)

4

• Training (on “Training Data”)

Training
Data

Task

Loss
function

Model with
parameters

Test
Data

Model with
trained

parameters

Input

Data

Model
Output

Input

Data

• Prediction (on “Test Data”, i.e. data was not used in the training)
Metric(s)

Metric(s)

Model

Output

Training (Parameter Optimization)

4

• Training (on “Training Data”)

Training
Data

Task

Loss
function

Model with
parameters

Test
Data

Model with
trained

parameters

Input

Data

Model
Output

Input

Data

• Prediction (on “Test Data”, i.e. data was not used in the training)
Metric(s)

Metric(s)

Only look at the
performance on the test
data until your model is

fully optimized.

Really.

Different Tasks

5

• ML type closely related to the available data for the task

Supervised
Learning

• Labelled data

• Classification

 (image classification, …)

• Regression

 (market forecasting, …)

Different Tasks

5

• ML type closely related to the available data for the task

Supervised
Learning

• Labelled data

• Classification

 (image classification, …)

• Regression

 (market forecasting, …)

Unsupervised
Learning

• Unlabelled data

• Clustering

 (recommender systems, …)

• Dimensionality Reduction

 (data compression, …)

Different Tasks

5

• ML type closely related to the available data for the task

Supervised
Learning

• Labelled data

• Classification

 (image classification, …)

• Regression

 (market forecasting, …)

Unsupervised
Learning

• Unlabelled data

• Clustering

 (recommender systems, …)

• Dimensionality Reduction

 (data compression, …)

Reinforcement
Learning

• An “agent” receives

 rewards for actions in

 an environment

• Robot Navigation,

 Games, …

Deep Learning

6

ML

AI

DL

• A large number of recent advances in ML

 is due to “deep learning”

 = training of deep neural networks

… … … …

Deep Learning

6

ML

AI

DL

• A large number of recent advances in ML

 is due to “deep learning”

 = training of deep neural networks

… … … …

nodes

weights

Deep Learning

6

ML

AI

DL

• A large number of recent advances in ML

 is due to “deep learning”

 = training of deep neural networks

… … … …

“fully-connected DNN”
“multilayer perceptron”

“feedforward (A)NN”…

nodes

weights

Deep Neural Networks

7

… … … …

Deep Neural Networks

7

… … … …~x

Deep Neural Networks

7

… … … …~x ~y = ~f
⇣
~x; ~✓

⌘

Deep Neural Networks

7

… … … …~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

Deep Neural Networks

7

… … … …~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

Deep Neural Networks

7

… … … …~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

Deep Neural Networks

7

… … … …~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

~f (k) = W(k�1) ~f (k�1) +~b(k�1)

Deep Neural Networks

7

… … … …

~y = ~f
⇣
~x; {W} ,

n
~b
o⌘

~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

~f (k) = W(k�1) ~f (k�1) +~b(k�1)

Deep Neural Networks

7

… … … …

~y = ~f
⇣
~x; {W} ,

n
~b
o⌘

~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

~f (k) = W(k�1) ~f (k�1) +~b(k�1)

f (k)
i ! �(f (k)

i)

Φ is the “activation function”

f (k)
i ! �(f (k)

i)

Deep Neural Networks

7

… … … …

~y = ~f
⇣
~x; {W} ,

n
~b
o⌘

~x ~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

~f (k) = W(k�1) ~f (k�1) +~b(k�1)

Non-linear
activation

functions are
really key. f (k)

i ! �(f (k)
i)

Φ is the “activation function”

f (k)
i ! �(f (k)

i)

The Output Function(s)

8

• Output function(s) = activation(s) in the output layer

• Closely connected to loss (and ultimately the task)

1

1 + exp(�x)

sigmoid
for binary
classification

linear
for regression

softmax of output node i

for classification of N classes
exp(xi)PN
j=1 exp(xj)

The Loss Function*

9

• How good is my current model?

• How to change the parameters to improve it?

• Loss function must be easily differentiable!

• Regression:

 Mean Squared Error (MSE)

Loss
function

Model with
parameters

Model

Output
Input

Data
Training

Data

* aka “cost function” aka “objective function”

1

n

nX

i=1

h
~yi � ~f

⇣
~xi; {W} ,

n
~b
o⌘i2

The Loss Function*

9

• How good is my current model?

• How to change the parameters to improve it?

• Loss function must be easily differentiable!

• Regression:

 Mean Squared Error (MSE)

Loss
function

Model with
parameters

Model

Output
Input

Data
Training

Data

* aka “cost function” aka “objective function”

1

n

nX

i=1

h
~yi � ~f

⇣
~xi; {W} ,

n
~b
o⌘i2

• Classification:

 Cross-entropy of prediction f (= interpreted

 as probability q) and the true probability p

 (= the classification labels y)

� 1

n

nX

i=1

"
X

classes

pi,class log qi,class

#

� 1

n

nX

i=1

"
X

classes

yi,class · log fclass
⇣
~xi; {W} ,

n
~b
o⌘#

The Loss Function*

9

• How good is my current model?

• How to change the parameters to improve it?

• Loss function must be easily differentiable!

• Regression:

 Mean Squared Error (MSE)

Loss
function

Model with
parameters

Model

Output
Input

Data
Training

Data

* aka “cost function” aka “objective function”

1

n

nX

i=1

h
~yi � ~f

⇣
~xi; {W} ,

n
~b
o⌘i2

• Classification:

 Cross-entropy of prediction f (= interpreted

 as probability q) and the true probability p

 (= the classification labels y)

� 1

n

nX

i=1

"
X

classes

pi,class log qi,class

#

� 1

n

nX

i=1

"
X

classes

yi,class · log fclass
⇣
~xi; {W} ,

n
~b
o⌘#

� 1

n

nX

i=1

⇢
log qi , signal

log (1� qi) , background

for binary classification

Optimization via Backpropagation

10

• We need the gradient w.r.t. each optimizable parameter

• Weights to last layer (output node):

… … … …

~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

f (k)
i ! �(f (k)

i)

@Loss

@✓

����
last layer

=
@Loss

@�

@�

@f

@f

@✓

����
last layer

Optimization via Backpropagation

10

• We need the gradient w.r.t. each optimizable parameter

• Weights to last layer (output node):

… … … …

~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

f (k)
i ! �(f (k)

i)

@Loss

@✓

����
last layer

=
@Loss

@�

@�

@f

@f

@✓

����
last layer

• Weights to 2nd last layer

@Loss

@✓

����
2nd last layer

=
@Loss

@�
· @�
@f

����
last layer

· @flast layer
@�2nd last layer

· @�
@f

· @f
@✓

����
2nd last layer

Optimization via Backpropagation

10

• We need the gradient w.r.t. each optimizable parameter

• Weights to last layer (output node):

… … … …

~y = ~f
⇣
~x; ~✓

⌘

f (k)
i =

X

j

w(k�1)
ij f (k�1)

j + b(k�1)
i

f (k)
i ! �(f (k)

i)

@Loss

@✓

����
last layer

=
@Loss

@�

@�

@f

@f

@✓

����
last layer

• Weights to 2nd last layer

@Loss

@✓

����
2nd last layer

=
@Loss

@�
· @�
@f

����
last layer

· @flast layer
@�2nd last layer

· @�
@f

· @f
@✓

����
2nd last layer

• Weights
to 3nd
last layer

@Loss

@✓

����
3rd last layer

=
X

nodes in 2nd last layer

@Loss

@�
· @�
@f

����
last layer

· @flast layer
@�2nd last layer

· @�
@f

����
2nd last layer

·
@f2nd last layer

@�3rd last layer
·@�
@f

· @f
@✓

����
3rd last layer

Stochastic Gradient Descent

11

• Ideal: Converge to the parameters of the global minimum of the loss function

• Practical: Converge to a “good-enough” local minimum

• Bad: Converge to “some” local minimum

• SGD: gradient estimated on a

 mini batch of training data

• Variance in gradient estimates

• Learning rate α:

local minimum

global minimum

Loss

Parameters
✓ ! ✓ � ↵

⌧
@Loss

@✓

�����
mini batch

Stochastic Gradient Descent

11

• Ideal: Converge to the parameters of the global minimum of the loss function

• Practical: Converge to a “good-enough” local minimum

• Bad: Converge to “some” local minimum

• SGD: gradient estimated on a

 mini batch of training data

• Variance in gradient estimates

• Learning rate α:

local minimum

global minimum

Loss

Parameters

crude over-simplification
of highly complex, high-
dimensional phase space

✓ ! ✓ � ↵

⌧
@Loss

@✓

�����
mini batch

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

learning ratetoo high→ instabilities

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

learning ratetoo high→ instabilities

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

learning ratetoo high→ instabilities

good learning rate

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Training Strategies

12

• Choosing a good learning rate is key

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]

[h
tt

ps
://

ra
w

.g
ith

ub
us

er
co

nt
en

t.c
om

/r
as

bt
/

py
th

on
-m

ac
hi

ne
-le

ar
ni

ng
-b

oo
k/

m

as
te

r/
co

de
/c

h0
2/

im
ag

es
/0

2_
12

.p
ng

,
M

IT
 L

ic
en

se
]

learning ratetoo low→ slow convergence

learning ratetoo high→ instabilities

good learning rate

Adaptive Moment Estimation (Adam)

• Adaptive learning rates:

• Reduce α during training

• For each parameter separately

• Momentum:

✓ ! ✓�(1� �)

✓
↵

⌧
@Loss

@✓

�◆

�� (previous change of ✓)

https://playground.tensorflow.org
https://github.com/tensorflow/playground

Activation Functions

13

1

1 + exp(�x)Sigmoidtanh(x)

ReLU
⇢
x , x > 0
0 , else

Leaky ReLU
⇢

x , x > 0
a · x , else

Requirements:

• Non-linear

• Fast differentiation

• Not bound to a

 fixed interval

Activation Functions

13

1

1 + exp(�x)Sigmoidtanh(x)

ReLU
⇢
x , x > 0
0 , else

Leaky ReLU
⇢

x , x > 0
a · x , else

generallyonly for
output

generallyonly for
output

typicalactivationfor hiddenlayers

one solutionto the dyingReLU problem

Requirements:

• Non-linear

• Fast differentiation

• Not bound to a

 fixed interval

Parameter Initialization

14

• Initial weight must not be symmetric

• Random initialization

• For sigmoid:

 “Xavier Weight Initialization”

 for n input values to the node

• For ReLU:

 “He Initialization”

Uniform in

� 1p

n
,

1p
n

�

Gaussian
⇣
µ = 0,� =

p
2/n

⌘

ReLU
⇢
x , x > 0
0 , else

tanh(x)

Exploding and Vanishing Gradients

15

• Vanishing Gradients:

• too small to result in a useful update

• Example: tanh(x) has derivative ≤ 1

• Many layers →

• Exploding Gradients:

•

• Gradient Clipping, revisit Weight Initialization, …

@Loss

@✓

@Loss

@✓(k)
/

NY

i=k+1

@�

@f

����
layer i

! 0

@Loss

@✓(k)
! NaN

@Loss

@✓
=

@Loss

@�

@�

@f

@f

@✓

Preprocessing

16

• Pre-processing of the input data is essential for numerical stability

• Want them to be centered around zero and with O(1) variance

subtract
mean &
divide by
std. dev.

subtract
mean &
divide by
std. dev.

take
logarithm
first

Splitting the Data

17

• Often, the dataset is split into three parts:

• Test data set: keep it until your model is fully optimized !

 (you can look at it once…)

• Training data set: for the optimization of the NN parameters

 (you use it extensively)

• Validation data set: check performance during optimization

• Example split: Train:Val:Test → 60% : 20% : 20%

Training
Data

Test
Data

Validation
Data

→ more in Nicole’s lecture!

Hyperparameters

18

Network structure

• Number of hidden layers

• Number of nodes in the hidden layers

• Activation functions

Weight Initialization

Optimizer and its parameters

• (Initial) learning rate, …

Batch size

Regularization → Nicole’s lecture
…

… … … …

18

optimizeusing theVALIDATIONdata set

Metrics

19

• Metric should represent a figure of merit for achieving the task

• Binary classification:

• Receiver operating characteristic (ROC) curve

• True Positive Rate* (TPR) vs.

 1 - False Positive Rate** (FPR)

 (“signal vs. ‘1 - background efficiency’ ”)

• Area Under the Curve (AUC) 10

1

TPR

1 - FPR

AUC

random
guess

better
Task

Metric(s)

Loss
function

* also “sensitivity”
** also “1 - ‘specificity’ ”

Metrics

19

• Metric should represent a figure of merit for achieving the task

• Binary classification:

• Receiver operating characteristic (ROC) curve

• True Positive Rate* (TPR) vs.

 1 - False Positive Rate** (FPR)

 (“signal vs. ‘1 - background efficiency’ ”)

• Area Under the Curve (AUC) 10

1

TPR

1 - FPR

AUC

random
guess

better
Task

Metric(s)

Loss
function

* also “sensitivity”
** also “1 - ‘specificity’ ”

• A (made-up) example for market forecasting (= regression)

• Loss: Mean Squared Error

• Metric: Error in the predicted profit, averaged over all products

Instead of a Summary: A Classification Example

20

• LHC events with several jets, a charged lepton and a neutrino

• Classification of jet permutations:

• Pick the correct jet order out of many possible orderings

• DNN implementation*

• Binary classification (ordering is either “right” or “wrong”)

• Loss: binary cross-entropy

• Output: sigmoid

• Activation in hidden layers: ReLU

* More efficient proposals have been made since then.

� 1

n

nX

i=1

⇢
log qi , signal

log (1� qi) , background

[JINST 14 (2019) P11015, arXiv:1907:11181]

Classification Example: Pre-Processing

21

• 26 input features:

• 4-momenta of the jets

• Boolean: Is the jet flagged as a b-jet?

• 3-momentum of the charged lepton

• Magnitude and azimuth (Φ) of the missing transverse momentum

• Φ is 2π-continuous → replace by sin(Φ) and cos(Φ)

• Input scaling:

xi !
xi � µi

�i

Classification Example: Training Progress

22

• Loss vs. Epoch

• 5 hidden layers:

 128-64-32-16-8

 256-128-64-32-16

 …

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.

– 7 –

Classification Example: Training Progress

22

• Loss vs. Epoch

• 5 hidden layers:

 128-64-32-16-8

 256-128-64-32-16

 …

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.

– 7 –

more capacity
still helps

Classification Example: Training Progress

22

• Loss vs. Epoch

• 5 hidden layers:

 128-64-32-16-8

 256-128-64-32-16

 …

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.

– 7 –

too much
capacity:
wait for

Nicole’s lecture

more capacity
still helps

Classification Example: Metrics

23

• Metric vs. Epoch

• Task:

 Find the right jet ordering

• Metric:

 Fraction of events with

 correctly predicted

 jet ordering

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.

– 7 –

Figure 1: Reconstruction e�ciency for events with at least four jets for di�erent choices of the
number of hidden layers (n) and the number of nodes in the first hidden layer (“maximum number
of nodes”). The set of hyperparameters that results in the best value of the reconstruction e�ciency
is highlighted with a bold marker.

consider the corresponding number of jets for the jet permutations (four, five or six), following the
ordering described at the end of Section 2.

1. Optimisation of the DNN structure: In Figure 1, the reconstruction e�ciency is shown for
networks where the number of hidden layers is varied from 2 to 7 in steps of one and the number
of nodes in the first hidden layer is varied using the values 128, 256, 512, 1024 and 2048. The
reconstruction e�ciency for networks with only 2 hidden layers and for networks with only 128
nodes in the first hidden layer is lower than the reconstruction e�ciency of networks with a larger
number of hidden layers or number of nodes in the first hidden layer. We conclude that the capacity
of such small networks is not large enough for the classification task. The best reconstruction
e�ciency is seen for the network with 5 hidden layers and 256 nodes in the first layer. The values of
the loss function and the reconstruction e�ciency are shown in Figures 2(a) and (b) as a function of
the training epoch for networks with 5 hidden layers and di�erent choices of the number of nodes
in the first hidden layer. The network with the best reconstruction e�ciency was trained for the
full 200 epochs and shows only a slight tendency of overfitting. Networks with a larger number of
nodes in the first layer, however, enter the regime of overfitting. For further optimisation, we choose
a network structure with 5 hidden layers and double the number of nodes in the first hidden layer
(512), which shows slight overfitting. We choose this network structure, because its larger capacity
promises a better performance when the network is regularised in step 3.

2. Optimisation of the hyperparameters of the optimiser: In Figure 3, the reconstruction
e�ciency is shown for the network with 5 hidden layers and 512 nodes in the first hidden layer if
the learning rate is varied using the values 10�5, 0.0001, 0.001 and 0.1 and the batch size is varied
using the values 1200, 6000, 12 000 and 60 000. Except for the case of too large batch sizes for

– 6 –

Classification Example: Hyperparameters

24

• 2D grid search:

 number of hidden layers n

 and maximum number

 of nodes in hidden layers

• Choice of best epoch

 based on metric on

 validation data set

• Now: Time for discussion

• Then:

Next Up

