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• Machine learning is enabling fascinating capabilities

• Most recent examples: 

      ChatGPT                   Stable Diffusion
ML

DL



Machine Learning

3

• Data + Task + “a mathematical formulation of what means ‘better’ ” * 

 (such as the number of type-1 and type-2 errors in a classification task) 

• Optimization of the model parameters on the data 

 = “Training” (aka the machine ‘learns’)
Task

Data

* often called a “performance measure”
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 (such as the number of type-1 and type-2 errors in a classification task) 
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parameters
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* often called a “performance measure”
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• Training (on “Training Data”)

Training
Data

Task

Loss
function

Model with
parameters

Test
Data

Model with
trained

parameters

Input

Data

Model
Output
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• Training (on “Training Data”)

Training
Data

Task

Loss
function

Model with
parameters

Test
Data

Model with
trained

parameters

Input

Data

Model
Output

Input

Data

• Prediction (on “Test Data”, i.e. data was not used in the training) 
Metric(s)

Metric(s)

Only look at the 
performance on the test 
data until your model is 

fully optimized. 

Really.



Different Tasks
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• ML type closely related to the available data for the task

Supervised
Learning

• Labelled data

• Classification 

 (image classification, …)

• Regression 

 (market forecasting, …)
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• ML type closely related to the available data for the task

Supervised
Learning

• Labelled data

• Classification 

 (image classification, …)

• Regression 

 (market forecasting, …)

Unsupervised
Learning

• Unlabelled data

• Clustering 

 (recommender systems, …)

• Dimensionality Reduction 

 (data compression, …)

Reinforcement
Learning

• An “agent” receives 

 rewards for actions in 

 an environment

• Robot Navigation, 

 Games, …
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• A large number of recent advances in ML 

 is due to “deep learning” 

 = training of deep neural networks

… … … …
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ML

AI

DL

• A large number of recent advances in ML 

 is due to “deep learning” 

 = training of deep neural networks

… … … …

“fully-connected DNN”
“multilayer perceptron”

“feedforward (A)NN”…

nodes

weights
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Non-linear
activation

functions are
really key. f (k)

i ! �(f (k)
i )

Φ is the “activation function”

f (k)
i ! �(f (k)

i )



The Output Function(s)

8

• Output function(s) = activation(s) in the output layer

• Closely connected to loss (and ultimately the task)

1

1 + exp(�x)

sigmoid 
for binary
classification

linear
for regression

softmax of output node i

for classification of N classes
exp(xi)PN
j=1 exp(xj)



The Loss Function*
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• How good is my current model?

• How to change the parameters to improve it?

• Loss function must be easily differentiable!

• Regression: 

 Mean Squared Error (MSE)

Loss
function

Model with
parameters
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Output
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Data
Training

Data

* aka “cost function” aka “objective function”
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� 1

n
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i=1

⇢
log qi , signal

log (1� qi) , background

for binary classification



Optimization via Backpropagation
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• We need the gradient w.r.t. each optimizable parameter

• Weights to last layer (output node):
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Stochastic Gradient Descent

11

• Ideal: Converge to the parameters of the global minimum of the loss function

• Practical: Converge to a “good-enough” local minimum

• Bad: Converge to “some” local minimum 

• SGD: gradient estimated on a 

 mini batch of training data

• Variance in gradient estimates

• Learning rate α:

local minimum

global minimum

Loss

Parameters
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Stochastic Gradient Descent
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• Ideal: Converge to the parameters of the global minimum of the loss function

• Practical: Converge to a “good-enough” local minimum

• Bad: Converge to “some” local minimum 

• SGD: gradient estimated on a 

 mini batch of training data

• Variance in gradient estimates

• Learning rate α:

local minimum

global minimum

Loss

Parameters

crude over-simplification
of highly complex, high-
dimensional phase space

✓ ! ✓ � ↵

⌧
@Loss

@✓

�����
mini batch



Training Strategies

12

• Choosing a good learning rate is key 

 for training convergence

[https://playground.tensorflow.org, github: https://github.com/tensorflow/playground, Apache License 2.0]
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good learning rate

Adaptive Moment Estimation (Adam)

• Adaptive learning rates:

• Reduce α during training

• For each parameter separately

• Momentum:

✓ ! ✓�(1� �)

✓
↵

⌧
@Loss

@✓

�◆

�� (previous change of ✓)

https://playground.tensorflow.org
https://github.com/tensorflow/playground
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1 + exp(�x)Sigmoidtanh(x)

ReLU
⇢
x , x > 0
0 , else

Leaky ReLU
⇢

x , x > 0
a · x , else

Requirements:

• Non-linear

• Fast differentiation

• Not bound to a 

 fixed interval



Activation Functions
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1

1 + exp(�x)Sigmoidtanh(x)

ReLU
⇢
x , x > 0
0 , else

Leaky ReLU
⇢

x , x > 0
a · x , else

generallyonly for
output

generallyonly for
output

typicalactivationfor hiddenlayers

one solutionto the dyingReLU problem

Requirements:

• Non-linear

• Fast differentiation

• Not bound to a 

 fixed interval



Parameter Initialization
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• Initial weight must not be symmetric

• Random initialization 

• For sigmoid: 

 “Xavier Weight Initialization” 

 for n input values to the node 

• For ReLU: 

 “He Initialization”

Uniform in


� 1p

n
,

1p
n

�

Gaussian
⇣
µ = 0,� =

p
2/n

⌘



ReLU
⇢
x , x > 0
0 , else

tanh(x)

Exploding and Vanishing Gradients

15

• Vanishing Gradients:

•            too small to result in a useful update

• Example: tanh(x) has derivative ≤ 1

• Many layers → 

• Exploding Gradients:

• 

• Gradient Clipping, revisit Weight Initialization, …

@Loss

@✓

@Loss

@✓(k)
/

NY

i=k+1

@�

@f

����
layer i

! 0

@Loss

@✓(k)
! NaN

@Loss

@✓
=

@Loss

@�

@�

@f

@f

@✓



Preprocessing

16

• Pre-processing of the input data is essential for numerical stability

• Want them to be centered around zero and with O(1) variance

subtract
mean &
divide by
std. dev.

subtract
mean &
divide by
std. dev.

take
logarithm
first



Splitting the Data

17

• Often, the dataset is split into three parts: 

• Test data set: keep it until your model is fully optimized ! 

 (you can look at it once…) 

• Training data set: for the optimization of the NN parameters 

 (you use it extensively) 

• Validation data set: check performance during optimization 

• Example split:   Train:Val:Test  →  60% : 20% : 20%

Training
Data

Test
Data

Validation
Data

→ more in Nicole’s lecture!



Hyperparameters

18

Network structure

• Number of hidden layers

• Number of nodes in the hidden layers

• Activation functions 

Weight Initialization 

Optimizer and its parameters

• (Initial) learning rate, … 

Batch size 
 
Regularization → Nicole’s lecture
…

… … … …

18

optimizeusing theVALIDATIONdata set



Metrics

19

• Metric should represent a figure of merit for achieving the task 

• Binary classification:

• Receiver operating characteristic (ROC) curve

• True Positive Rate* (TPR) vs. 

 1 - False Positive Rate** (FPR) 

 (“signal vs. ‘1 - background efficiency’ ”)

• Area Under the Curve (AUC) 10

1

TPR

1 - FPR

AUC

random 
guess

better
Task

Metric(s)

Loss
function

* also “sensitivity”
** also “1 - ‘specificity’ ”
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• Metric should represent a figure of merit for achieving the task 

• Binary classification:

• Receiver operating characteristic (ROC) curve

• True Positive Rate* (TPR) vs. 

 1 - False Positive Rate** (FPR) 

 (“signal vs. ‘1 - background efficiency’ ”)

• Area Under the Curve (AUC) 10

1

TPR

1 - FPR

AUC

random 
guess

better
Task

Metric(s)

Loss
function

* also “sensitivity”
** also “1 - ‘specificity’ ”

• A (made-up) example for market forecasting (= regression)

• Loss: Mean Squared Error

• Metric: Error in the predicted profit, averaged over all products



Instead of a Summary: A Classification Example

20

• LHC events with several jets, a charged lepton and a neutrino

• Classification of jet permutations:

• Pick the correct jet order out of many possible orderings 

• DNN implementation*

• Binary classification (ordering is either “right” or “wrong”) 

• Loss: binary cross-entropy

• Output: sigmoid

• Activation in hidden layers: ReLU

* More efficient proposals have been made since then.

� 1

n

nX

i=1

⇢
log qi , signal

log (1� qi) , background

[JINST 14 (2019) P11015, arXiv:1907:11181]



Classification Example: Pre-Processing

21

• 26 input features:

• 4-momenta of the jets

• Boolean: Is the jet flagged as a b-jet?

• 3-momentum of the charged lepton

• Magnitude and azimuth (Φ) of the missing transverse momentum

• Φ is 2π-continuous → replace by sin(Φ) and cos(Φ) 

• Input scaling:

xi !
xi � µi

�i



Classification Example: Training Progress

22

• Loss vs. Epoch

• 5 hidden layers: 

 128-64-32-16-8 

 256-128-64-32-16 

 …

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.
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• Metric vs. Epoch 

• Task: 

 Find the right jet ordering 

• Metric: 

 Fraction of events with 

 correctly predicted 

 jet ordering

(a)

(b)

Figure 2: Value of (a) the loss function and (b) the reconstruction e�ciency as a function of the
training epoch for events with at least four jets for the network with 5 hidden layers and di�erent
choices of the number of nodes in the first hidden layer (“max. nodes”). The learning rate is set to a
value of 10�3 and the batch size to a value of 6000. The values that are calculated with the training
sample are shown as dashed lines and the values calculated with the validation sample are shown
as solid lines.
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Figure 1: Reconstruction e�ciency for events with at least four jets for di�erent choices of the
number of hidden layers (n) and the number of nodes in the first hidden layer (“maximum number
of nodes”). The set of hyperparameters that results in the best value of the reconstruction e�ciency
is highlighted with a bold marker.

consider the corresponding number of jets for the jet permutations (four, five or six), following the
ordering described at the end of Section 2.

1. Optimisation of the DNN structure: In Figure 1, the reconstruction e�ciency is shown for
networks where the number of hidden layers is varied from 2 to 7 in steps of one and the number
of nodes in the first hidden layer is varied using the values 128, 256, 512, 1024 and 2048. The
reconstruction e�ciency for networks with only 2 hidden layers and for networks with only 128
nodes in the first hidden layer is lower than the reconstruction e�ciency of networks with a larger
number of hidden layers or number of nodes in the first hidden layer. We conclude that the capacity
of such small networks is not large enough for the classification task. The best reconstruction
e�ciency is seen for the network with 5 hidden layers and 256 nodes in the first layer. The values of
the loss function and the reconstruction e�ciency are shown in Figures 2(a) and (b) as a function of
the training epoch for networks with 5 hidden layers and di�erent choices of the number of nodes
in the first hidden layer. The network with the best reconstruction e�ciency was trained for the
full 200 epochs and shows only a slight tendency of overfitting. Networks with a larger number of
nodes in the first layer, however, enter the regime of overfitting. For further optimisation, we choose
a network structure with 5 hidden layers and double the number of nodes in the first hidden layer
(512), which shows slight overfitting. We choose this network structure, because its larger capacity
promises a better performance when the network is regularised in step 3.

2. Optimisation of the hyperparameters of the optimiser: In Figure 3, the reconstruction
e�ciency is shown for the network with 5 hidden layers and 512 nodes in the first hidden layer if
the learning rate is varied using the values 10�5, 0.0001, 0.001 and 0.1 and the batch size is varied
using the values 1200, 6000, 12 000 and 60 000. Except for the case of too large batch sizes for
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• 2D grid search: 

 number of hidden layers n 

 and maximum number 

 of nodes in hidden layers 

• Choice of best epoch 

 based on metric on 

 validation data set
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