
Nicole Hartman

nicole.hartman@tum.de

Train the Trainer workshop

7th February 2023

How to design (and debug) your ML model
Mastering Model Building

/ 67

Who am I?

2

• ORIGINS Data Science Lab post-doc

• Particle physicist

• Big data -> big opportunities!!
Set and sequence modeling

Event
reconstruction

Density Ratio Estimation
Generative models /

/ 67

In the context of science, the well-known adage
“a picture is worth a thousand words” might well
be “a model is worth a thousand datasets”

2001.04385

3

This talk: How to
choose this model

/ 67

What we’ll cover today

4

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

/ 674

/ 67

Starting off…

5

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 675

/ 67

Working example

6

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Underfitting

7

Model is not expressive enough

High training error

Training data Test data

Also high test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Overfitting

8

Model too expressive to generalize to unseen dataset
Training data Test data

Small (zero) training error High test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 679

Fit 2nd order polynomial to quadratic distribution

Optimal model complexity

Training data Test data

Small training error Also small test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Bias / variance tradeoff

10

Model Complexity

Bias2

Total error
E

rr
or Variance

Optimal
balance

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

• Training dataset

• Truth labels
• : ground truth function

•

• Train model on dataset S

• Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

ĥS

Bias / variance tradeoff: maths 1

11

= 𝔼 [ξ2] + 2 𝔼[ξ] ⋅ 𝔼[h*(x) − hS(x)] + 𝔼 [(h*(x) − hS(x))2]
MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

= σ2 + 𝔼 [(h*(x) − hS(x))2]

0

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

• Let — the performance of the model trained on
infinitely many datasets

• Substitute this back into the MSE expression

havg(x) = 𝔼S [hS(x)]
Bias / variance tradeoff: maths 2

12

MSE(x) = σ2 + 𝔼 [(h*(x) − hS(x))2]
= σ2 + 𝔼 [(h*(x) − havg(x) + havg(x) − hS(x))

2]
= σ2 + (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]

No cross-term because
𝔼 [havg(x) − hS(x)] = 0

Bias2 Variance
Error on this class of models How does this instantiation compare

with the other possible ones?

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6713

MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
High bias: diagnostics

Bias2

The training error high,
even if we increase the
training data.

Linear fit

hS(x) = θ0 + θ1x

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6714

High variance: diagnostics
MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]

Variance

5th order polynomial fit

hS(x) = θ0 + θ1x + θ2x2 + θ3x3 + θ4x4 + θ5x5

The training error
decreases as we increase
the training data.

Can learn to set these
coefficients to 0

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6715

MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
Variance

Lots of possibilities for the fitted function depending on the random realization of training data.

High variance: intuition
CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

What’s the culprit?

16

CS 229 Lecture

Training dataset size

E
rr

or

Test error

Training error

Desired performance

High bias?

High Variance?

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

17

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Starting off…

18

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 6718

/ 67

How to train?

19

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

Image by brgfx on Freepik

Want a large training
dataset to minimize .ℒ

Want a large enough validation
set for statistically significant

generalization metric.

Start with: 60 / 20 / 20

Issue: Don’t want to
look at the test set
while optimizing!!

Val

https://www.freepik.com/free-vector/cartoon-character-boy-girl-playing-seesaw-white_12851971.htm#query=see%20saw&position=0&from_view=keyword

/ 6720

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

retrainHow to maximize statistics?

Val

on K splits for the dataset ℒ

Train

Model 1

Model 2

⋯
ℳ1

ℳ2

ℳK

Val

TrainVal

Val TrainModel K

K-fold cross validation

ℳ =
1
K

K

∑
i=1

ℳi

At test time, average the
predictions from the models

Ensembling helps
performance!

✓ Couple percent gain in accuracy

✓ Used in Kaggle competitions!

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Batch size

22

Minimize by SGDℒ
w = w − α∇wℒ

Make a MC estimate

≈ w − α
m

∑
i=1

∇wℒ(xi, yi)

m: mini-batch size

CS231n notes

Intimately tied to learning rate!
If you increase the batch size by a factor of 2, scale by for a fair comparisonα

1
2

• As large as possible to still fit on the GPU.

• Powers of 2 for memory efficiency

Bigger batches reduces the error on the MC estimate

E.g, 256, 512, 1024

post

https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

/ 67

Early stopping

23

CS231n Lecture 7

ℒ

epoch

Train
Val

Save model with
the best val loss

Val loss stops
improving

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Hyperparameter search

24

Already many options…

Medium article

1 Activations

4 Learning
rate

2

3 Nodes / layer

Number of
layers

+ many more!
in this talk and others!

Coarse scan:
3 activations {sigmoid, ReLU, ELU}

x 3 layers {5, 10, 20}

x 4 nodes {10, 50, 250, 200}

x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}

x 2 {with and w/o scheduler}

x 10 K-fold cross validation (K=10)

= 3840 trainings !!!

https://samedhira.medium.com/activation-functions-cf6fef0e5922

/ 67

Hyper-parameter search

25

Grid Search Random Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Not all hyper-parameters are equal!

Image from CS231n lecture

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

/ 67

Hyperparameter strategies

26

CS231n DS

Fast prototyping
1. Start with a subset of the training dataset

2. Find parameters for a model that overfits

3. Start the random search around this point

Awesome paper

1906.04032

What worked for others?
Starting point random search

Scan in log space

Coarse scan:
3 activations {sigmoid, ReLU, ELU}

x 3 layers {5, 10, 20}

x 4 nodes {10, 50, 250, 200}

x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}

x 2 {with and w/o scheduler}

x 10 K-fold cross validation (K=10)

= 3840 trainings !!!

Can automate!

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss landscape

27

CS221 Lecture

Linear functions Neural networks

(non-convex)(convex loss)

https://stanford-cs221.github.io/autumn2019/lectures/index.html#include=learning2.js&mode=print1pp

/ 67

Starting off…

28

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 6728

/ 6729

Models in the

Deep Learning Era

/ 67

The Deep Learning Revolution

30
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201863

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”

Slide from CS231n Lecture 9

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

Natural Language Processing

31

2005.14165

Setting
LAMBADA

(acc)
LAMBADA

(ppl)
StoryCloze

(acc)
HellaSwag

(acc)

SOTA 68.0a 8.63b 91.8c 85.6d

GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. a[Tur20] b[RWC+19] c[LDL19]
d[LCH+20]

Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.

and [Tur20]) and argue that “continuing to expand hardware and data sizes by orders of magnitude is not the path
forward”. We find that path is still promising and in a zero-shot setting GPT-3 achieves 76% on LAMBADA, a gain of
8% over the previous state of the art.

LAMBADA is also a demonstration of the flexibility of few-shot learning as it provides a way to address a problem that
classically occurs with this dataset. Although the completion in LAMBADA is always the last word in a sentence, a
standard language model has no way of knowing this detail. It thus assigns probability not only to the correct ending but
also to other valid continuations of the paragraph. This problem has been partially addressed in the past with stop-word
filters [RWC+19] (which ban “continuation” words). The few-shot setting instead allows us to “frame” the task as a
cloze-test and allows the language model to infer from examples that a completion of exactly one word is desired. We
use the following fill-in-the-blank format:

Alice was friends with Bob. Alice went to visit her friend . ! Bob

George bought some baseball equipment, a ball, a glove, and a . !
When presented with examples formatted this way, GPT-3 achieves 86.4% accuracy in the few-shot setting, an increase
of over 18% from the previous state-of-the-art. We observe that few-shot performance improves strongly with model
size. While this setting decreases the performance of the smallest model by almost 20%, for GPT-3 it improves accuracy
by 10%. Finally, the fill-in-blank method is not effective one-shot, where it always performs worse than the zero-shot
setting. Perhaps this is because all models still require several examples to recognize the pattern.

12

GPT-3 Performance

Figure 3.2

With a training dataset
size of 500B words.

/ 67

Deep Learning philosophy…

Bigger = better

Train

the

Trainer
Train

the

Trainer

What about our
model complexity

discussion?

32 / 67

/ 67

ResNet building block

33

ResNets: 1512.03385

Slide CS231n lecture

weight layer

weight layer

ReLU

x

ℋ(x)

Normal layers

If layer isn’t needed,
need to learn the identity.

Degrades
performance!

Residual block

weight layer

ℱ(x)

ℱ(x) + x

x

weight layer

+

x

ReLU identity

Learn the correction factor
Solves the vanishing
gradients problem!

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet: performance

34

ResNets: 1512.03385

Slide CS231n lecture

Learn the correction factor

Order of magnitude
increase in # of layers

What do we gain???

🏋
Error decreases
by factor of two

Crucial for almost every modern architecture from natural
language (1706.03762) to generative models (1906.04032).

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

Regularization Techniques

35

How to restrict the optimization problem to help the NN generalize better.

/ 67

/ 67

Regularization

36

Occam’s razor for ML

ℒβ(w) = ℒ(w) + β ℛ(w)
Fit the training data Penalize complicated models

Hyperparameter governing
tradeoff of the two objectives.

When multiple models describe the training
data… choose the simplest one!

/ 67

L2 Regularization (most common for NNs)

37

ℒβ(w) = ℒ(w) + β |w |2

"Weight decay”

Encourages weights to be small

β |w |2

✅ Include in random search

(Log scale, e.g, = 0, 1e-6, 1e-4)β

= w − α∇w(ℒ + βw2)
w = w − α∇wℒλ

= (1 − 2β)w − α∇wℒ

Decay

/ 67

L1 regularization (inducing sparsity)

38

ℒβ(w) = ℒ(w) + β |w |β |w |
Encourages weights to be small

Increasing regularization

−log β

co
ef

fic
ie

nt
s

scikit learn

application in 1804.06913

https://scikit-learn.org/stable/modules/linear_model.html

/ 67

Dropout: intro

39

CS231n Lecture 7

Issue: Don’t want the NN to rely heavily on individual features

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

ML version of not
putting all your eggs

in one basket

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: idea

40

Original Network With dropout At training time, zero out
some neurons with dropout
fraction p

Hyperparameter we
need to optimize!

🏃
Issue: Don’t want the NN to rely heavily on individual features

CS231n Lecture 7

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

✅ Encourages learning robust
features

📝 At test time, use all the neurons
for prediction!!

Like training an ensemble of the NNs without being as €€€

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: performance

41

Regularization

Dropout, weight decay, use a smaller model

Tip: try overfit first, then try to close the gap between train and val.

Regularization

Dropout, weight decay, use a smaller model

Tip: try overfit first, then try to close the gap between train and val.

CS231n DS3

Overfit first — then try to close the gap!!

https://docs.google.com/presentation/u/1/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit?usp=sharing

/ 67

Batch Normalization

42

What about the features in the hidden layers?
“You want zero mean and unit variance operations? Just make them so!”

1502.03167

Stanford's CS 231n Lecture 6

At training time, normalize over
the activations of the minibatch

Original paper: inserted after
Fully Connected layers, and
before nonlinearity.

Additional learnable parameters
for the scale and shift: γ and β.

̂x(k) =
x(k) − 𝔼 [x(k)]

Var [x(k)]
yi,j = γj ̂xi,j + βj

For set / sequence based
data (Nikolai’s talk) LayerNorm
also useful

Fully Connected

Batch Norm

Tanh

Fully Connected

Batch Norm

Tanh

⋯

Some debate, e.g, 1912.04259
suggests other placements better
in some cases.

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf
https://arxiv.org/abs/1607.06450

/ 67

Data augmentation : motivation

43

Q: How can you modify your training data to artificially increase
your dataset size?

Recall: More training data reduces variance.

/ 67

Data augmentation : examples

44

1 Horizontal flips

CS231n Lecture 7

2 Random crops
and scales

3 Adjust contrast
and brightness

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Data augmentation — physics

45

Less used in practice…

With a simulator and we can often get as many training examples as we want

ϕ

Example: Azimuthal
rotations

/ 67

Data augmentation — alternatives

46

Jet Images — Deep Learning Edition 1511.05190

1 Preprocess for uniformity

Issue: Larger models with more data take longer to train
➡ Remove the variation to train faster.

2 Architecture design to
preserve invariants

LorentzInvariance: Lorentz Net and ParT 2202.03772

Azimuthal Symmetry: 2107.02908

+ many others

/ 67

Fine-tuning / transfer learning

47

Particle ID

x 20 million
95% accurate

x 200 thousand

Particle ID
75% accurate

Original Task Modified task

😣

Fine-tuning (1) Start with weights optimized
with the larger dataset.

(2) Adjust weights
with the smaller
dataset.

x 200 thousand

Particle ID

🥳95% accurate (3) Enjoy increase
in performance!

/ 67

Fine-tuning / Transfer learning: chatGPT

48

Apparently… chatGPT has learned math and syntax

Original Task

Fine-tuning

Train on the corpus
of the whole internet

Fine-tune weights
on the chatbot
converations

GPT-3

chatGPT

chatGPT interlocutor: Oliver Schulz

/ 67

Fine-tuning / Transfer learning

49

2203.06210

6 F. A. Dreyer, R. Grabarczyk, P. Monni: Leveraging universality of jet taggers through transfer learning

Table 2. Benchmarks for top tagging with pT > 500 GeV. The di↵erent columns show the AUC for the di↵erent transfer
learning models considered in the text, where FT denotes the fine-tuning option, FR denotes the frozen-layer option, and the
(10%) superscript refers to results obtained with just one tenth of the original training data.

AUC AUCFT AUCFR AUC(10%) AUC(10%)
FT AUC(10%)

FR

LundNet3 (from top 2 TeV) 0.9820 0.9820 0.9816 0.9773 0.9802 0.9791
LundNet5 (from top 2 TeV) 0.9866 0.9865 0.9863 0.9826 0.9850 0.9845
LundNet5 (from W 500 GeV) - 0.9863 0.9858 - 0.9834 0.9832
ParticleNet (from top 2 TeV) 0.9826 0.9826 0.9793 0.9765 0.9795 0.9772

tude smaller than that needed to train a similarly perform-
ing LundNet model from scratch. Importantly, the di↵er-
ence between the fully trained model and the fine-tuning
and frozen-layer transfer learning setups is rather mod-
erate in the case of LundNet5, which indicates that such
class of models have rather high transferability and they
can easily be retrained on a di↵erent task. In the case of
ParticleNet, we observe that the fine-tuning setup still
produces AUC values higher than those of the model fully
trained on smaller data sets, although it does not reach
the tagging accuracy observed for LundNet5. Moreover,
Fig. 4 also shows that the performance of ParticleNet
gets significantly worse when using the frozen-layer setup,
with the fully trained model outperforming the transfer
learning results already for a training done on 105 events,
while LundNet5 reaches almost the asymptotic values of
AUC for this data sample (see also Tab. 2). Overall, this
clearly shows that the use of transfer learning provides a
promising avenue to reduce the amount of data required
to train new taggers, with certain classes of models such as
LundNet being more suitable for the application of these
techniques. Whether it is possible to define a metric quan-
tifying a priori the ability of a model to be transferred
to a di↵erent task with reduced computational resources
than those needed for a full training, and how to construct
better taggers with such features remain interesting open
questions.

Fig. 4. Area under the ROC curve as a function of the total
signal and background training data set size.

We now move on to study the ROC curves corre-
sponding to the di↵erent models in Fig. 5, showing the
background rejection 1/"QCD versus signal e�ciency,

"Top. A better performing tagger has a corresponding
ROC curve closer to the top-right corner of the figure.
The upper panel shows the ROC corresponding to the
models LundNet3, LundNet5 and ParticleNet all trained
from scratch for a top tagger with pT > 500 GeV. We
observe that, as expected, LundNet5 performs better than
the other two models, which achieve a very similar perfor-
mance. This is due to the additional information stored
in the tuples associated with each node of the graph (see
Eq. (3)). The second panel of Fig. 5 shows the ROC
obtained with LundNet5 and di↵erent transfer learning
options from a top tagger with pT > 2 TeV, divided by
the ROC of the model trained from scratch (shown in the
upper panel). The dashed blue line corresponds to the
fine-tuning setup in which all weights are re-trained on
the new task. This option clearly reproduces the perfor-
mance of the tagger trained from scratch, but as already
observed before it does not lead to any reduction of the
computational complexity associated with the training.
The dotted blue line, instead, corresponds to the transfer
learning obtained with the frozen-layer setup which, as
already observed in Tab. 2, leads to a performance that
is very close to that of the original model, with an AUC
less than a permille below the full model, and background
rejection at intermediate signal e�ciencies within 20% of
the fully trained tagger. This performance remains far
better than most state-of-the-art jet taggers, and orders
of magnitude above analytic substructure discriminants.

The remaining three panels in Fig. 5 show a similar
comparison in the case of LundNet3 and ParticleNet
models transferred from a top tagger with pT > 2 TeV,
and LundNet5 models transferred from a W -boson tag-
ger with pT > 500 GeV. For the fine-tuned W , the initial
learning rate is set to 3 · 10�4 to allow for a larger per-
turbation of the pre-trained top model. All of the above
four panels also report, in red, the result obtained with a
reduced training data set of 10% of the original size, i.e.
105 events, with either the fine-tuning (dashed) or frozen-
layer (dotted) setup. For LundNet, the plot confirms the
conclusions drawn from the AUC study above, showing
that these models (both for LundNet3 and LundNet5) still
reach the performance of state-of-the-art taggers also in
the transfer learning setups, with the frozen-layer setup
being only moderately less accurate than the computa-
tionally more demanding fine-tuning. While it is clearly
easier to transfer a model from a similar tagger trained on
a di↵erent kinematic regime, we see that transfer learn-
ing still reaches highly competitive ROC curves also when
the starting model is a W tagger, shown in the last panel

Better!

/ 67

Weight sharing

50

Alternative architectures designed to reuse weights as suited for
the input data.

“Don’t relearn what you don’t need”

CNNs

See next talk by Judith!

Transformers
1706.03762

Deep Sets
1810.05165

RNNs

See tomorrow by Nikolai!

/ 67

Ensembles

51

L

wiDeep ensembles error: Variance of the
predictions from different local minima

Random initialization

Converged weights

∂L /∂ wi at init—

MSE(x) ≈ (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
Variance

1912.02757

/ 67

Ensembles: Application

52

ATL-PHYS-PUB-2020-003

100

101

102

c-
je
t r
ej
ec
tiR
n

ATLAS 6iPulDtiRn 3reliPinDry
0
s 13 7e9, t ̄t

511,3
D,36

0.6 0.7 0.8 0.9 1.0
b-jet eIIiciency

1.00
1.05

5
Dt
iR
 tR

5
1
1
,3

Probe whether the result of an
experiment is meaningful or a
random fluctuation.

Width = std dev of 5 NN trainings

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

/ 67

Ensembles: Application

53

HDBS-2019-29

Use the variation of
trainings as a
nuisance parameter

Tr
ai

ni
ng

 /
Av

er
ag

e
Single Training
Standard Deviation
Average

mHH [GeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/

/ 67

Starting off…

54

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Open question

Bias / variance trade-off
Statistical learning theory

✋

Feature choices

/ 6754

/ 67

Log transform: motivation

55

Ex: b-tagging input features

log (pT
frac) scaled log (pT

frac)pT
frac ≡ pT

jet/ pT
jet

ΔR(trk, jet) log (ΔR) scaled log (ΔR)

Power law
distributions

With the log, become bell-shape

Normalizing encourages
inputs to be close to the

activation functions
As Johannes explained

🧐 Somewhat HEP specific
which often have features
with these falling spectra

/ 67

Log transform: motivation

56

Train pT
frac and ΔR Train log pT

frac and log ΔR

How does this help? 20% speed up in training time!

/ 67

Sample dependence

57

Issue: Want a classifier that is performant over a range of energies
E

nt
rie

s

Jet pT [GeV]

l-jets
b-jets

Can also use class weights
for imbalanced classes.

b
/ l

ig
ht

Jet pT [GeV]

1

Ratio: r

wi = wi − α
M

∑
j=1

1
r(p(j)

T)
∇wℒj

sample weight l-jets:

b-jets: = b/l ratio

r = 1
r

/ 67

Ablation studies: What has the model learned?

58

CS 229 Lecture

Example — spam classification

18,820

TK
Thomas Kuhr

TTT workshop
⋯

RC
Random Company

Useless Ad

⋯

❌ Spam

✅ Not Spam

baseline:

94.0% accuracy

Overall system:

99.9% accuracy

😀

What made the
difference?

NN ❌ Spam

✅ Not Spam
Feature
engineering

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Ablation studies

59

CS 229 Lecture

18,820Remove features from the model…
and see what breaks it!

Email text parser: most
important feature!

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Saliency maps

60

1312.60342

• NN: nonlinear function

• Approximate as a linear classifier
by using a Taylor expansion.

Sc(I) ≈ θTI + b

∂Sc

∂I
I0

θ =

Saliency map: Plot the for
each of these inputs

|θ |

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013

test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013

test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

/ 67

Saliency maps

61

Physics Maths

ATL-PHYS-PUB-2020-014

b-jets with failing the 77% efficiency cut

ATLAS Simulation Preliminary
 √s = 13 TeV,t t̄

Nature 600, 70–74 (2021)

Use saliency maps to postulate new
conjectures which could then become
new math theorems!

Understand what the model
has learned about this
particle ID task.

https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x

/ 67

Debugging exercise

62

[If ⏰ permits]

/ 67

/ 67

Loss curves — what are the problems?

63

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Starting off…

64

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Open question

Bias / variance trade-off
Statistical learning theory

✋

Feature choices

/ 6764

/ 6765

[One of the]

Outstanding deep questions
in deep learning.

/ 67

Double Descent

66

post

Probably less relevant for
physics applications
‣ Likely our models not big enough

‣ Label noise not common

1912.02292

https://twitter.com/daniela_witten/status/1292293122752262145?lang=en

/ 67

What did we learn today about choosing the right model?

67

Total error = Bias2 + Variance
Underfitting Overfitting

Deep learning gains:
increasing complexity Regularization:

✓ L2 regularization

✓ Dropout

✓ Batch Norm

✓ Fine-tuning

Training 101:
Monitor loss curves for learning rate
Use random search for hyper-parameters

Use ensembles
- Model performance

- Error

/ 67

Backup

lay
Optimizer

node

/ 6769

CS 229 notes

MSE(x) = σ2 + (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
High bias: diagnostics

0

The training error on the
linear model still large, even
when there is no noise on the
training data.

/ 67

Learning rate schedule

70

Slide from CS231n Lecture 7

α < ?

Instead of training independent models, use multiple
snapshots of a single model during training!

/ 67

learning rate schedules

71

α < ?
CS229 notes

2002.09277

2006.08680

Minimize by SGDℒ
w = w − α∇wℒ

/ 67

Batch size — caveat

72

Minimize by SGDℒ
w = w − α∇wℒ ≈ w − α

m

∑
i=1

∇wℒ(xi, yi)
Make a MC estimate

m: mini-batch size

Alternative philosophy…
Smaller mini-batches
encourage stochasticity and
converge to flatter minima
which generalize better.

From CS 229 notes

Section 9.2

/ 67

ResNets: Motivation

73

1512.03385

Complex model doing worse than the simple one on the training dataset!

Training Error Testing Error

Doesn’t make sense from the bias / variance picture we built up earlier!

Implies an optimization problem.

Input representation

74

The European Physical Journal C
Vol 73 3 (2013) 2304

Collection of tracks:

Xi : i = { 1 , … , n }

Each track has features:

Xi ∈ ℝm

Jet has labels Y

● Quark / gluon tagging: Y ∈ {q, g}

● Higgs tagging: Y ∈ {H, top, QCD}

● Top tagging: Y ∈ {top, QCD}

● b-tagging: Y ∈ {b, c, l}

Want: p(Y | X1, … , Xn)

/ 67

Ensembles

75

Good way to interpret models!! Let’s us probe whether experiments are independent of each other

ATL-PHYS-PUB-2020-003

100

101

102

c-
je
t r
ej
ec
tiR
n

ATLAS 6iPulDtiRn 3reliPinDry
0
s 13 7e9, t ̄t

511,3
D,36

0.6 0.7 0.8 0.9 1.0
b-jet eIIiciency

1.00
1.05

5
Dt
iR
 tR

5
1
1
,3

100

101

102

103

104
LL
gh
t-I
lD
vR
ur
 je
t r
ej
ec
tLR
n

ATLAS 6LPulDtLRn 3relLPLnDry
0
s 13 7e9, t ̄t

R11,3
D,36

0.6 0.7 0.8 0.9 1.0
b-jet eIILcLency

1.0

1.2

R
Dt
LR
 tR

R
1
1
,3

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

/ 6776

CS 229 Lecture

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 6777

CS 229 Lecture

I.e, perhaps a jet classification ex?

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Bias variance tradeoff

78

CS 229 Lecture

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Overfitting pictures

79

CS221 Lecture

Deep Sets: for b-tagging

80

Inputs

X1

X2

Xn

NN track feature
extractor

Φ(X1) y
Outputs

Φ(X2)

Φ(Xn)

…

…
 ∑

Sum: Permutation
invariant operation

F

NN jet feature extractor

Models correlations
between the tracks

∈ {b, c, l}

Translational invariance

CNNs

81

Strong inductive bias: or domain knowledge we inject to efficiently converge to a solution.

CS 231n Lecture 5: CNNs

Recurrent neural networks

82

Graphic adapted from Stanford

CS 231n Lecture 10: RNNs

Transformers

83

Sequence: [Mary, likes, John]

Set: [{0, Mary} , {1, likes} , {2, John}]

Transformer
architecture

Replace the Deep Sets Sum operation with a
weighted sum (can still be permutation invariant)

1706.03762

Computes a
weight

Weighted sum over inputs

Standard architecture for Natural Language
Processing (replacing RNNs): faster training -> better
optimization.

And then… stack-them-up!

“Any time you have a deep set you can substitute in a transformer as it’s always more
expressive.”

~ Peter Battaglia (or what I remembered of the quote)

Input processing: ΔR

84

failing IP cuts

Ex: b-tagging input features

Xi =

Training with ΔR(trk,jet) encodes a symmetry in the
input representation - and makes learning features
easier.

Model diagnostic
Saliency Maps

Saliency maps

86

1312.6034

What has DIPS learned about b-jets?

Saliency definition

87

ATL-PHYS-PUB-2020-014

What has DIPS learned about b-jets?
b-jets with 8 tracks failing the
77% b-tagging working point

Largest sd0 Smallest
sd0

ATLAS Simulation Preliminary
 √s = 13 TeV, tt

● Consider b-jets failing the 77% WP

● Average over jets with 8 tracks

● Sort the tracks by sd0 for the average

xxx

88

/ 67

The Deep Learning Revolution

89

Slide from CS231n Lecture 9

/ 67

Choosing the right features

90

CS221 Lecture

https://stanford-cs221.github.io/autumn2019-extra/lectures/learning3.pdf

/ 6791

CS221 Lecture

/ 67

Loss curves — what are the problems?

92

CS231n DS3

/ 67

Batch Normalization

93

Alternative Placements

1912.04259

B. Networks
1) AlexNet
AlexNet is known as the first deep CNN architecture. It was
proposed by Krizhevesky et al. [13] and managed to achieve the
state of the art results in ImageNet Large Scale Visual Recogni-
tion Competition 2012 (ILSVRC 2012). This network has more
layers and parameters compared to CNNs prior to it like LeNet-
5 [4]. The design of many other CNNs after AlexNet has been
inspired by the depth of this architecture and its efficient learn-
ing approach. This architecture uses ReLU [8] as a non-saturat-
ing activation function to cope with the problem of vanishing
gradient [6]. Overlapping sub-sampling, local response normal-
ization (LRN) and dropout [12] were used in order to prevent
the over-fitting problem in this architecture [12]. AlexNet uses
large size filters (11x11 and 5x5) at its initial layers which had
not been practiced in CNNs before it. In the early days of intro-
ducing AlexNet, it was trained on 2 GPUs to overcome the
hardware shortcomings. However, in this research, we trained
this network on only one GPU. Additionally, the LRN layers in
the original AlexNet architecture are replaced by the BN layers
in this study. This network has been tested with the three ar-
rangements introduced earlier in this paper.

2) VGG-16
Inspired by the extraordinary results achieved by the CNNs,
Simonyan and Zisserman proposed a simple architecture for
designing CNNs. This new architecture was named VGG and it
is famous for its simple and homogenous architecture. VGG
came as the 1st runner-up in ILSVRC 2014 and showed the state
of the art result in the localization task. This architecture
demonstrated that replacement of 11x11 and 5x5 filters with
3x3 ones can have the same effect of the large size filters and
provides a low computational complexity by reducing the
number of parameters. These findings encouraged the
researchers to work with smaller size filters. For decreasing the

computational cost, VGG uses max-pooling [7] after Conv
layers and padding to preserve the input size. Also, it takes
advantage of 1x1 convolution in order to decrease the
complexity of the network. VGG has shown excellent results in
image classification tasks and localization problems. Although,
it has one major drawback and it is its high computational cost,
which is due to the large number of layers used in this network.
Even though the BN algorithm has increased the learning speed
of VGG, it is still relatively slower than other networks like
AlexNet. In this study, we use the VGG-16 architecture from
the original paper and like the AlexNet, the training process of
this network is evaluated with all three of the introduced
arrangements.

3) ResNet-20
ResNet was proposed by He et al [3]. The authors used 152-
layers deep residual network in the ILSVRC 2015 and managed
to win the competition. ResNet is many times deeper than
previously proposed architectures and it shows less
computational complexity. ResNet employs a technique called
skip connection that causes fewer layers to be propagated
through in backpropagation in order to speed-up the learning
process and reduce the effect of vanishing gradients [6]. ResNet
also attained a 28% improvement image recognition benchmark
dataset COCO [9]. Groundbreaking performance of ResNet on
computer vision tasks illustrated the important role that the
depth of a network plays in its success. We selected ResNet-20,
which is one of the proposed architectures in the original
ResNet paper, for our experiments in this research. There is
only one pooling layer in this architecture and it is placed before
the first FC layer.

III. RESULTS

A. Experimental setup
To investigate the results of utilizing the BN layer in different
positions, we use three image datasets: CIFAR10, CIFAR100
and Tiny ImagNet [11].
Each of the CIFAR10 and CIFAR100 has 60000 32x32 color
images. CIFAR10 dataset consists of 10 classes of 6000 images
and the CIFAR100 dataset includes 100 classes of each 600
images. We use 50000 of images from each of the CIFAR10 and
CIFAR100 for the training process.
Tiny ImageNet is a subset of ImageNet dataset that contains
100000 64x64 color images which are composed of 200 classes
each with 500 samples. We resize the images in this dataset to
32x32. All the 100000 images of Tiny ImagNet have been used
for the training.
A batch size number of 512 is used in the training of the
networks. The state of the art optimizer, Adam [5], has been
adopted as our chosen optimizer with the initial learning rate of
0.001 and β1 of 0.9 and β2 of 0.999. Tensorflow [12] library
has been used for implementing the networks and algorithms of
this paper.

Fig. 1. Different arrangements of layers used in this study. (a)
arrangement 1, (b) arrangement 2 and (c) arrangement 3. (The Pooling
layer is dashed because it might not always be present after the third layer
in these arrangements.)

OG paper

BN layer between the Conv layer and the non-linear activation
function is preferable to the other arrangement for this network.

Even though the results provided in this research show the
advantages of one arrangement over another, we cannot
conclude that there is an absolute most effective way of ordering
the layers that can be used in all CNNs. The results are variant
when we apply these arrangements to different networks. We
suggest training your selected network with all the three
arrangements for a few epochs and check which arrangement
causes the network to learn fastest. You can continue the training
of the network with that arrangement.

We believe that these findings demonstrate that we should
always search for a more beneficial way of adopting the
techniques and algorithms in machine learning problems. The
suggested ways of using the algorithms may not always turn out
to be the most effective ones. The more efficient way of using
the methods can only be revealed by doing various experiments.

REFERENCES
[1] S. Ioffe, and C. Szegedy, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. arXiv preprint
arXiv:1502.03167, (2015).

[2] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition. ICLR 75, 398–406 (2015).

[3] K. He, X. Zhang, S. Ren and, J. Sun, Deep Residual Learning for Image
Recognition. Multimed. Tools Appl.77, 10437–10453 (2015).

[4] Y. LeCun and others, LeNet-5, convolutional neural networks. http//yann.
lecun.com/exdb/lenet 20 (2015).

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,’’
arXiv preprint arXiv:1412.6980, (2014).

[6] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,’’ Int. J. Uncertainty, Fuzziness
Knowledge-Based Syst. 6, 107–116(1998).

[7] M.A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,’’ in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on 1–8 (2007).

[8] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,’’ In Proc. 27th International Conference on Machine
Learning, (2010).

[9] T.-Y. Lin, et al. “Microsoft coco: Common objects in context,’’ in
European conference on computer vision 740–755 (Springer, 2014)

[10] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R.
Salakhutdinov, ‘’Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,’’ J. Mach. Learn. Res. 1, 11(2014).

[11] Tiny ImageNet visual recognition challenge. https://tiny-
imagenet.herokuapp.com CS 231N (2015)

[12] M. Abadi, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
(2016).

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, (2012).

Fig. 2. Illustration of change in accuracy with respect to the training step for different arrangements of the selected networks. Each figure shows
the training process of a network with all of the arrangements.

/ 67

Double Descent

94

1912.02292

