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Who am |?

 ORIGINS Data Science Lab post-doc
. Particle physicist

==

N

* Big data -> big opportunities!!

Run Number: 311287

Set and sequence modeling Event Number: 518319772

EEEEEEEEEE Date: 2016-10-23 07:05:27 CEST

Prompt % , 4 2
Tracks / \
Event // %
\ reconstruction [
Jet A / 4

Generative models /
Density Ratio Estimation
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2001.04385

In the context of science, the well-known adage
“a picture.ds worth a thousand words” might well
be “s worth a thousand datasets”

\

This talk: How to
choose this model
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What we’ll cover today

—— Open question

Feature choices

Going deeper

Training techniques
Statistical learning theory

Bias / variance trade-off

o Would love feedback +
\_ discussions!

- Tm



Starting off...

Statistical learning theory

Bias / variance trade-off

J(ll|  Would love feedback +

L/ discussions!

- Tm



CS 229 notes

Working example

147 % training data

1.2

ground truth A ™
1.0 1

0.8 -
> 0.6

0.4 -

0.2 -
0.0 -

—0.2 A
0.0 0.2 0.4 0.6 0.8 1.0

6 /o7 TUTI



https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

Underfitting

Model is not expressive enough

Training data Test data
141 x  training data 141 test data
1.2 ground truth h* 1291 —— ground truth h ™

1 = linear fit .04 —— linear fit

0.0 A 0.0 1

—0.2 A —0.2 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X

High training error Also high test error

/67 TUTI


https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

Model too expressive to generalize to unseen dataset

Training data Test data
141 x  training data 1.4 test data
1.21 5% order poly fit 127 —— ground truth h”
104 —— 5% order poly fit

0.0 1 0.0

—0.2 A —0.2 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X

Small (zero) training error High test error
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https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

Optimal model complexity

Fit 2nd order polynomial to quadratic distribution

Training data Test data

1.41 x training data 1.4 test data
1.21 ground truth h” 1.21 —— ground truth h ™
1.0 1 —— 2% order poly fit 1.0 1 —— 2% order poly fit
0.8 1 0.8 1
> 06 > 06

0.4 1 0.4 1
0.2 1 0.2 1
0.0 1 0.0 1

~0.2 1 | | | | ~0.21 | | | |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Small training error Also small test error
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https://cs229.stanford.edu/notes2022fall/main_notes.pdf

Bias / variance tradeoff

CS 229 notes

Total error

Variance

Error

balance Y&

Model Complexity
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https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes
Bias / variance tradeoff: maths 1

. Training dataset § = {x®, y}
- Truth labels y = h*(x) + &

. h* > ground truth function

. ED ~ H(0,6%)
. Train model izS on dataset S
- Consider test point (x,y) and quantify the expected test error:

Defn of y

MSE(x) = Eg¢ [(v = b)) "= E [(h*(x) + & = hy(x))?]
_ 0
= E [¢2] +2 BKET - El*(x) — hy()] + E [(h*(x) — hy(x))?]
= 6% + E |[(h*(x) — hg(x))?]

"o m



https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes
Bias / variance tradeoff: maths 2

. Let i, (x) = Eg [hS(x)] — the performance of the model trained on
infinitely many datasets

- Substitute this back into the MSE expression
MSE(x) = 6% + E |(h*(x) — hy(x))?|

=0’ +E (h*(x) — havg(x) T ha"g(x) - hS(X)>2]

No cross-term because

E lhavg(x) —h@| =0

= 62 + (h*(x) — havg(x))z +E [(havg(x) - hS(x))2]
Bias? Variance

Error on this class of models How does this instantiation compare
with the other possible ones?

12 /67 TUTI


https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

High bias: diagnostics

MSE(x) = (B*(x) — Ity (x))* + E [(havg(x) — hy(x))?

Bias?
. . Fit linear model on large dataset
Linear fit
147 x  training data
hg(x) = 6y + O1x 1.2 1 ground truth h”™

1.0 - —— linear fit

0.8 A

The training error high,
even if we increase the
training data.

0.4 1

0.2 A

0.0

—0.2 -
0.0 0.2 0.4 0.6 0.8 1.0

13 /67 X TI.ITI



https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

High variance: diagnostics

MSE(x) = (h*(x) — hg,,(x))* + E [(hm,g(x) — hy(x))?
Variance

o Fit 5" order polynomial on large dataset
oth order polynomial fit <7

, b Bl s g 10 S 1.41 x  training data 4
X) = X X X X X
s(X) = O + 0,x + 0)x7 + 037 + O,x7 + 05 1.2 1 ground truth h™ *
t t t 1.0{" —— 5% order poly fit %
Can learn to set these \ poly %x
coefficients to 0 0.8 -Xx X
X X xx)()(
> 0.6{% ) *
: &s« X X Xx)s( o
. %
The training error 0.4 %% W:x 306 o X
decreases as we increase Ay ST X
the training data. 027 X7k X
X
0.0 1 .
. X
_0.2- T 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

14 167 X TI.ITI


https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 notes

High variance: intuition

MSE(x) = (h*(x) — Iy (x))* + E [(havg(x) — hy(x))?

Variance

fitting 5% degree polynomial on different datasets

x  training data 147 141 x  training data

5% order poly fit 1.21 27 5% order poly fit
1.0

1.4~

1.2

0.8 A

> 06 %
0.4
X
0.2 —
x  training data
0.0 0.0 th _
5% order poly fit
-0.2 -0.2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
X X X

Lots of possibilities for the fitted function depending on the random realization of training data.
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https://cs229.stanford.edu/notes2022fall/main_notes.pdf

CS 229 Lecture

What'’s the culprit?

High bias?

Error

Test error

—

High Variance?

Desired performance

Training error

Training dataset size

16 /67 TUTI


https://cs229.stanford.edu/materials/ML-advice.pdf

CS 229 Lecture

What'’s the culprit?

High bias?

Error

Test error

e ———
]

Training error High Variance?

Desired performance

Training dataset size

17 /67 TUTI


https://cs229.stanford.edu/materials/ML-advice.pdf

Starting off...

Training techniques

J(ll|  Would love feedback +
L/ discussions!

TUTI



How to train?

S Issue: Don’t want to
Minimize & by SGD look at the test set

while optimizing!!

Start with: 60

Want a large enough validation
set for statistically significant

Want a large training generalization metric.

dataset to minimize &£.

Image by brgfx on Freepik

19 /67 TI.ITI


https://www.freepik.com/free-vector/cartoon-character-boy-girl-playing-seesaw-white_12851971.htm#query=see%20saw&position=0&from_view=keyword

How to maximize statistics?

£

At test time, average the
predictions from the models

Minimize & by SGD on K splits for the dataset
w=w—-aV,Z

e

1 K

g e -- =g LA
i=1

Ensembling helps
performance!

v Couple percent gain in accuracy

v Used in Kaggle competitions!
/”K K-fold cross validation

Tum




Learning rate

CS231n Lecture 6

Minimize &£ by SGD
w=w-—-aV,Z

7 Label the loss curves!

very high learning rate
high learning rate
good learning rate
low learning rate

21 /67



http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

CS231n notes

Batch size

Minimize & by SGD m: mini-batch size
w=w-—alV, L~ w—-a V,Z(x,y)
. Make a MC estimate i=1

Q Bigger batches reduces the error on the MC estimate
 As large as possible to still fit on the GPU.

» Powers of 2 for memory efficiency

E.g, 256, 512, 1024 The most dramatic optimization to nanoGPT so far
(~25% speedup) is to simply increase vocab size from
50257 to 50304 (nearest multiple of 64). This
calculates added useless dimensions but goes down
a different kernel path with much higher occupancy.
Careful with your Powers of 2.

#.. - AndrejKarpathy @ post
Yy @karpathy

Intimately tied to learning rate! i ..
If you increase the batch size by a factor of 2, scale a by — for a fair comparison

TUTI


https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

Early stopping

CS231n Lecture 7

e [rain
e \/al

Val loss stops
Save model with improving

the best val loss

epoch

23 /67


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Hyperparameter search
Already many options...

a Activations

/A‘(

SlngId I Leak% llieLL)J ./ N u m b e r Of v:ih‘\\\ «»1
0'($) max Tr,T ’
1+ 2 . — “ \" 7 \':
o) I MIXOME @ o+ Iaye 'S ,o{@ ; i
ReLU 1/ ELU ' //Z{{{‘.;’ “\'/ N !4,;;;‘“ e
max (0, x) ) {z(er Ly z i g _/ .’\\\'/,’“\'//'.
Medium article .
‘_ e Nodes / layer
<

Learning
rate

Coarse scan:

3 activations {sigmoid, ReLU, ELU}

x 3 layers {5, 10, 20}

x 4 nodes {10, 50, 250, 200}

X 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}
+ wa V\,a mLore! x 2 {with and w/o scheduler}

Ln this talk and others! o
24 /67 = 384 trainings !!! UM



https://samedhira.medium.com/activation-functions-cf6fef0e5922

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012
Image from CS231n lecture

Hyper-parameter search
Grid Search Random Search

o
O
O
Unimportant Parameter
O
Unimportant Parameter

Important Parameter Important Parameter

Not all hyper-parameters are equal!
25 /67 T”Tl


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

CS231n DS

Hyperparameter strategies

Fast prototyping
1. Start with a subset of the training dataset Can automate!
2. Find parameters for a model that overfits '
3. Start the random search around this point

What worked for others?

Starting point random search

x 3 layers {5, 10, 20}
x 4 nodes {10, 50, 250, 200}
X 4 |learning rates {1e-2, 3e-3, 1e-3, 3e-4}

N
Q Scan in log space
26 /67 Tu."


https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

CS221 Lecture

Loss landscape

Linear functions Neural networks

(convex loss) (non-convéx)

TUTI


https://stanford-cs221.github.io/autumn2019/lectures/index.html#include=learning2.js&mode=print1pp

Starting off...

Going deeper

J(ll|  Would love feedback +
L/ discussions!

TUTI



Models in the

Deep Learning FKra
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The Deep Learning Revolution

Slide from CS231n Lecture 9

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

30

25

20

15

10

30 /67

28.2

16.4

8 layers

shallow

2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

11.7

2013

Zeiler &
Fergus

8 layers

\ I
\
\
\
\
\

152 layers| |152 layers| |152 layers
Ao Ao A
19 layers| |22 layers,
7.3 6.7'/
- 5.1
HEmoa B
2014 2014 2015 2016 2017 Human
Simonyan & Szegedy et a| He et al Shao et al Hu et al Russakovsky et al
Zisserman (VGG) (GoogleNet (ResNet) (SENet)

TUTI


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

2005.14165

Natural Language Processing

__Human_

90

80

70 __Zero-ShotSOTA [/ ___—%  o—
>
©
= 60
3
<

GPT-3 Performance
40 Figure 3.2

—eo— Zero-Shot

—e— One-Shot

—o— Few-Shot (K=15 With a training dataset
20 i (K ) size of 500B words.

0.1B 04B 08B 13B 26B  67B 13B

51 /67 Parameters in LM (Billions) Tum

30



What about our
model complexity
discussion?

. K\ \\Dﬂ/"' Deep Learning philosophy... ©
°*. o Ol. Bigger = better .
DA )= ® e

et .. ® ‘




ResNets: 1512.03385
Slide CS231n lecture

ResNet building block

1 If layer isn’t needed, ~OO- :
' neeﬁ to learn the identity. Q Learn the correction factor

N

Solves the vanishing

Degrades %(x) 9(x) _|_ x @ ﬁj gradients problem!
!

performance! T
weight layer weight layer
T Rel U F (x) T RelLU idf,ﬁity
weight layer weight layer
i 5
A X

5 /67 Normal layers Residual block o


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

ResNets: 1512.03385
Slide CS231n lecture

ResNet: performance

\Q " Learn the correction factor
What do we gain???
30

28.2
25.8 152 layers| (152 layers| |152 layers
25
A Ao A
20 Order of magnitude
164 increase in # of layers
15
i L7 [19layers| |22 layers Error decreases
7.3 by factor of two H
5.1 \G/
) - B == s s

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Linetal Sanchez &  Krizhevskyetal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Huetal Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

Crucial for almost every modern architecture from natural
language (1706.03762) to generative models (1906.04032).

TUTI


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf
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. .~ Regularization Techniques °

® X O O‘[ How to restrict the optimization problem to help the NN generalize better. ‘
. | “
- ® - ™ O o ®

®
_ °
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Regularization

LAw) = Lw) +  R(w)

Fit the training data f Penalize complicated models

Hyperparameter governing
tradeoff of the two objectives.

Occam’s razor for ML

When multiple models describe the training
data... choose the simplest one!

36 /67



L2 Regularization (most common for NNs)

Low)=Lw)+p |wl

Encourages weights to be small

"Weight decay”
w=w-aV,Z,
=W — avw(g +ﬂw2)
= El — Zﬂj)w —aV, &

Loss

R'S
Decay

Include in random search
(Log scale, e.g, f =0, 1e-6, 1e-4)

37 /167

| 2 |OSS

-2.0

15

10 -05 00 05

10

15

20



scikit learn
application in 1804.06913

L1 reqgularization (inducing sparsity)

Low) = LW)+f |w)

Encourages weights to be small

Lasso and Elastic-Net Paths F— L2 IOSS

| ] |OSS

Loss

coefficients

-10 { —— Lasso
—=—- Elastic-Net

-1.5 .0 0.5

= lo_gﬂ .
38 /67 T”Tl


https://scikit-learn.org/stable/modules/linear_model.html

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

DrOpOUt: intr() CS231n Lecture 7
Issue: Don’t want the NN to rely heavily on individual features

\Jj - has an ear X
has a tail k

ML version of not
putting all your eggs
in one basket

Y

Q0000

is furry X— . cat
. ~___——" score
" has claws /
- mischievous X

look

o TUTI


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

DrOpOUt' idea CS231n Lecture 7
Issue: Don’t want the NN to rely heavily on individual features
Original Network With dropoud =, At training time, zero out

L 3

v~ = some neurons with dropout
fraCtlon p \H’B‘PBY‘PHY&! meter we

need to optlmi,ze!

Encourages learning robust

features
i\/r—— hasanear —%—__
T:I - has a tail .
i :*—’ is furry + cat

At test time, use all the neurons ' nasciaws _—— score

- mischievous X

for prediction!! T ook

Like training an ensemble of the NNs without being as €€€

nm



http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

CS231n DS3

Dropout: performance

Without dropout With 0.2 dropout
80 4 — s
—— training 704 — ftraining
— yalidation — yvalidation
70 -
60 4
60 4
50 -
50 -
™ @ 40 A
* 40+ -
30 4 30 -+
20 - 20 4
10 10 -
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
#batches #batches

\Q’ Overfit first — then try to close the gap!!
41 / 67 Tlm


https://docs.google.com/presentation/u/1/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit?usp=sharing

Batch Normalization

1502.03167
Stanford's CS 231n Lecture 6

“You want zero mean and unit variance operations? Just make them so!”

)

Fully Connected

v

Batch Norm

v

Tanh

v

Fully Connected

v

Batch Norm

v

Tanh

v

42 /67

8 —  [x¥]

\/Var [x®]

Yij = 1%t b

At training time, normalize over

Fk) —
the activations of the minibatch

Additional learnable parameters
for the scale and shift: y and 3.

Original paper: inserted after

— Fully Connected layers, and

before nonlinearity.

Some debate, e.g, 1912.04259

suggests other
in some cases.

For set / sequence based
data (Nikolai's talk) LayerNorm

also useful

placements better

TUTI


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf
https://arxiv.org/abs/1607.06450

Data augmentation : motivation

Recall: More training data reduces variance.
Fit 5" order polynomial on large dataset

1.4 4

1.4 4

x  training data x  training data

1.2 1.2

5t order poly fit ground truth h*

1.0 1 1.0 1 —— 5% order poly fit

0.8 -
> 0.6

0.8 A

> 0.6
0.4 1 0.4 1
0.2 1 0.2 1

0.0 1 0.0 1

—0.2 A —0.2 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X
Q: How can you modify your training data to artificially increase
your dataset size”?

nm




CS231n Lecture 7

Data augmentation : examples

Horizontal flips

Random crops
and scales

e Adjust contrast
and brightness

44 | 67
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Data augmentation — physics

ATLAS s Example: Azimuthal
rotations

Less used in practice...
With a simulator and we can often get as many training examples as we want

T



Data augmentation — alternatives

Issue: Larger models with more data take longer to train
= Remove the variation to train faster.

a Preprocess for uniformity

[Translated] Azimuthal Angle (¢)
o
o

46 / 67

Jet Images — Deep Learning Edition 1511.05190

250< pT/GeV <260 GeV, 65 < mass/GeV <95 250 < pT/GeV <260 GeV, 65 < mass/GeV <95
Pythia 8, W'—» WZ, {5 = 13 TeV Pythia 8, W'— WZ, {5 = 13 TeV
N N 0 s s 10 s
- i 1 & s 10 8
.. ] 10 2 < 10 2
= 2 <
e g1 s 2
lln ln 10" E™ 107
s ] P
s N EEE 102 s 102
| = CEE H
0] = m 10° g 10°
i ' 10* E 10"
= | | 10% 10°
RN . -0.
HEEEE | 10° 10°
7 T
= 10° 10°
] | 10° 10°
1 [N N | N 1 10° 1 10°
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5
[Translated] Pseudorapidity (n) [Translated] Pseudorapidity (1)

Architecture design to
preserve invariants

| |x' .

:] MLP () sum Pooling @ Minkowski Norm &

Inner Product

Lorentz Group Equivariant Block (LGEB)

Lorentzinvariance: Lorentz Net and ParT 2202.03772
Azimuthal Symmetry: 2107.02908
+ many others



Fine-tuning / transfer learning

Original Task Modified task
Particle ID Particle ID
95% accurate 75% accurate
x 20 million x 200 thousand &

(1) Start with weights optimized

Fine-tuning with the larger dataset.
(2) Adjust weights
with the smaller
dataset.
Particle ID

- .
95% accurate Z—é-g (3) Enjoy increase
" in performance!

x 200 thousand TUTI

47 167



chatGPT interlocutor: Oliver Schulz

Fine-tuning / Transfer learning: chatGPT
QOriginal Task

n | want you to act as a Julia REPL. | will type commands and you will reply with what the
REPL should show. | want you to only reply with the REPL output inside one unique code
G PT_3 block, and nothing else. Do not write explanations. Do not type commands unless |
instruct you to do so. When I need to tell you something in English | will do so by putting
Train on the corpus text inside curly brackets {like this}. My first command is VERSION.

of the whole internet

() Copy code

julia> VERSION
v"1.7.0"

Fine-tuning
chatGPT T

Fine'tune WelghtS julia> cholesky([2.0 0.5; 0.5 1.2])

LowerTriangular{Float64,Array{Float64,2}}
on the chatbot (1141 0.0 ]

converations [0.447 0.785]

Apparently... chatGPT has learned math and julia syntax

nm



Fine-tuning / Transfer learning

2203.06210

Pythia 8.223 simulation - &~ fine-tuning
0.990 + signal: pp - tt, background: pp = jj -.%- frozen
anti-k; R = 0.8 jets, p: > 500 GeV
0.985 -
0.980 -
@)
)
<
0.975 A
0.970 A
X // —e— LundNet5
0.965 - JRAE —e— ParticleNet
‘ *
103 104 10° 10°
49 /67 total size of training dataset



Weight sharing

Alternative architectures designed to reuse weights as suited for
the input data.

“Don’t relearn what you don’t need” RNNs |
1
C N N S _> —> hT
Image Maps -
Input
\N tput
[\M
- mp| Fuly Conn See tomorrow by Nikolai!
See next talk by Judith!
P e Transformers
--------------------------------------------------- 1706.03762

i -

N7 Multi- Multi-Hea
Attention Attention
. \. J \C J
= D e e e tS ti A A Positional
= ncodin: Encoding

so/67 | & 1810.05165

Energy/Particle Flow Network |

Inputs Outputs
(shifted right)




1912.02757
Ensembles

MSE(x) = (h*(x) — hg,(x))* + E [(hm,g(x) - hS(x))2]

A @ Random initialization

[) — - 0L /Jw. atinit
@ Converged weights

Deep ensembles error: Variance of the [
predictions from different local minima

51 /67 TUTI




ATL-PHYS-PUB-2020-003

Ensembles: Application

102 L I I I I I I I I I I I _
- - I I I ]
-% - ATLAS Simulation Preliminary ]
L [ Vs=13TeV,tt i
o L ]
O
101 ' —
Probe whether the result of an 1 RNNIP ]
experiment is meaningful or a B -
random fluctuation. D”:TS | |
0 L o S S
10 Width = std dev of 5 NN trainings
-'9 & E_ ] I I | I I I I | I I I I | _E
> 1.05 V4 -
F i R o e e e e e e e e i e
o 0.6 0.7 0.8 0.9 1.0

52 /67 b-jet efficiency


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

HDBS-2019-29

Ensembles: Application

o 20r | | | | -

8 “L ATLAS —— Single Training -

O gl Vs=13TeV,2017436f0" —— Standard Deviation L

> 18 goF signal Region 1 Use the variation of
< ¢ ---- Average . -

5160 -, trainings as a

S r ¥/ nuisance parameter
c 1.4_— |

© T 7

1.2

(@ I N
c O

O
o
T

| | | | | | | | | | | | |
400 600 800 1000 1200
53 /67 muH [GeV] mn


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/

Starting off...

Feature choices

: B W
g
*

‘:“
alsgda, -7
Tnbe we Y
& _su_s.n.[A
| E_LE L

o Would love feedback +
\ discussions!

TUTI



Log transform: motivation

9 Somewhat HEP specific

Ex: b-tagging input features

10.0 -
7.5 1
5.0 4

25 1

—

NN

0.0

00 02 04
prrac = p_l_jet/ ijet

ON 10

04 -

0.3 -

0.2 -
0.1 1

00

10.0 +
75 1
5.0 4
25 1

—

|

Power law
distributions

0.4 -

“

00
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00 02 04
AR(trk, jet)

06 08 10

0.3 -
0.2 1

0.1 1

0.0

00

00

log (AR)

04 -

03 1

0.2 1

0.1 1

which often have features 1 I-jets
with these falling spectra

1 c-jets

1 b-jets

04

0.3 1

0.2 4

0.1 1

-10

-5 0 5 10
scaled log ( pyfrac)

Normalizing encourages
inputs to be close to the
activation functions

As Johannes explained

With the log, become bell-shape

-5 0 5 10
scaled log ( AR)

TUTI



Log transform: motivation

- training
validation

Train p;ac and AR

56 /67

0 20 40 &0 80

epochs

i}

cross-entropy loss

o

h

(W1 )
i

o
h
[

o
h
—

o
=2
=]

o
Ln
w

o
Ln
o

- training
validation

Train log p;ac and log AR

How does this help? 20% speed up in training time!




Sample dependence

Issue: Want a classifier that is performant over a range of energies

A A

— |-jets
— D-jets

Ratio: r

_. b /light

Entries

>
Jet pr [GeV] Jet pr [GeV]
-
w,=w,—Qa Z V fZ] ‘Q ~Can also use class weights
r(p(J)) for imbalanced classes.

sample weight {Hets' r=1

b-jets: r = b/l ratio TUT]

57 /167



CS 229 Lecture

Ablation studies: What has the model learned?
Example — spam classification

Random Company
Useless Ad
X Spam

18.820 * O
Thomas Kuhr O
TTT workshop

Not Spam

What made the
difference?

baseline: %7 » X Spam Overall system:
Feature — N N y

94.0% accuracy engineering +> @notspam  99.9% accuracy

nm


https://cs229.stanford.edu/materials/ML-advice.pdf

Ablation studies

CS 229 Lecture

N

o

59 /67

Remove features from the model...

and see what breaks it!

Component Accuracy
Overall system 99.9%
Spelling correction 99.0
Sender host features 98.9%

Email header features 98.9%
Email text parser features 95%

Javascript parser 94.5%

Features from images 94.0%

Email text parser: most
> important feature!

[baseline]

TUTI


https://cs229.stanford.edu/materials/ML-advice.pdf

Saliency maps

1312.60342

* NN: nonlinear function

« Approximate as a linear classifier
by using a Taylor expansion.

S.() ~ O'I+ b
/ aS,

0 =
ol

Iy

Saliency map: Plot the | @] for
each of these inputs

60 /67




Saliency maps

Physics

Prompt
Tracks

Understand what the model
has learned about this
particle ID task.

Jet

b-jets with failing the 77% efficiency cut

0.4

03 Vinputs Db

ATLAS Simulation Preliminary
Vs =13 TeV 17

—0.2

log AR -

log p7*°

| I I I I
1 2 3 4 5 6 7 8

Tracks sorted by sq0

ATL-PHYS-PUB-2020-014
61 /67

Maths

Use saliency maps to postulate new
conjectures which could then become
new math theorems!

Article

Advancing mathematics by guiding human
intuition with Al

https://doi.org/10.1038/s41586-021-04086-x  Alex Davies'®, Petar Velickovié', Lars Buesing', Sam Blackwell', Daniel Zheng',
Received: 10 July 2021 Nenad TomaseV', Richard Tanburn', Peter Battaglia', Charles Blundell', Andras Juhasz?,
. Y Marcl ?, Geordie Williamson®, Demis Hassabis' & Pushmeet Kohli'®

Accepted: 30 September 2021

Published online: 1 December 2021

The practice of mathematics involves discovering patterns and using these to
Open access formulate and prove conjectures, resulting in theorems. Since the 1960s,

™ Check for updates mathematicians have used computers to assist in the discovery of patterns and
formulation of conjectures', most famously in the Birch and Swinnerton-Dyer
conjecture?, a Millennium Prize Problem’. Here we provide examples of new
fundamental results in pure mathematics that have been discovered with the
assistance of machine learning—demonstrating amethod by which machine learning
canaid mathematicians in discovering new conjectures and theorems. We propose a
process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and
using these observations to guide intuition and propose conjectures. We outline this
machine-learning-guided framework and demonstrate its successful application to
current research questions in distinct areas of pure mathematics, in each case
showing how it led to meaningful mathematical contributions onimportant open
problems: anew connection between the algebraic and geometric structure of knots,
and a candidate algorithm predicted by the combinatorial invariance conjecture for
symmetric groups®. Our work may serve asamodel for collaboration between the
fields of mathematics and artificial intelligence (Al) that can achieve surprising results
by leveraging the respective strengths of mathematicians and machine learning.

Nature 600, 70-74 (2021)

TUTI


https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x

Debugging exercise
[ If & permits ] /O
b )
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Loss curves — what are the problems?

CS231n DS3

Hypotheses

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Not converged yet: need
longer training

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

63 /67
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https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

Starting off...

= Open question

J(ll|  Would love feedback +
L/ discussions!

TUTI




deep questions
deep learning



1912.02292

a Daniela Witten
Double Descent e st
Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
e -
V4
0.5 : Critical — Test
s ! /"_ Regime Train
— 1 < '
=0.4 i
= '
© 0.3 ! ——
— !
—~ i Interpolation
0.2 : Threshold Probably less relevant for
g \\ { physics applications
— 0.1 \! > Likely our models not big enough
:\\ ‘ » Label noise not common
0.0 =

66 / 67

10 20 30 40 50 60
ResNetl8 width parameter

TUTI


https://twitter.com/daniela_witten/status/1292293122752262145?lang=en

What did we learn today about choosing the right model?

Total error

Totalerror=  Blas? +  \Variance -1 .
Underfitting Overfitting \
‘.gﬁwwaN ] m— Model Complexity >

_Deep I(_aarnlng gains: Regularization:

increasing complexity ..
v L2 regularization
v Dropout
v Batch Norm
v Fine-tuning

a
67 /67 T”Tl
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CS 229 notes

High bias: diagnostics

0
MSE(x) =6+ (1¥(x) = hyyo(0))? + E | (y,o(x) = hg(x))?

Fit inear model on noiseless dataset

1.4 4 .
The training error on the x  training data

linear model still large, even
when there is no noise on the 01 — linear fit
training data.

1.2 ground truth A~

0.0 A1

—0.2 A
0.0 0.2 0.4 0.6 0.8 1.0

nm




Learning rate schedu

le

Slide from CS231n Lecture 7

Instead of training independent models, use multiple

snapshots of a single model during training!

05-, Single Model N oo
04| Standard LR Schedule [/} 041
03- L [ i 03
02 02
0.1 01
0- 04
-0.1 ~0.1
02 -02
03 -03
0.4 3] -04
80 TS = 50 50
0 T —= o 40
30 Py, S _— 30
20 o= " 20

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with resta
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with

70 /67

Snapshot Ensemble

AN
Cyclic LR Schedule

rts”, arXiv 2016

permission.

Training loss

101 Cifar10 (L=100,k=24, B=300 epochs)

= Standard Ir scheduling
= (Cosine annealing with restart Ir 0,1

10° | | | | |

| | | |
NN !

107!

107

s f -1 M

ModeI|Model|Model|Model|ModeI|Model
1 2 3 4 5 6
0 50 100 150 200 250 300
Epochs

Cyclic learning rate schedules can
make this work even better!

TUTI



CS229 notes

. 2002.09277
learning rate schedules 2006.08680
Minimize & by SGD
w=w-—-aV, &
CIFAR-10 ‘ 200 Quadratically Parameterized Model
— lr=0.1-001 ' — test error, nit.=~0.1
. 175 1 k === training error, init =0 1
150 - ! ww et error, init.=0.001
g W“M’ . 198 \' -~~~ tralning error, init.=0.001
5 & 100 4
w A 075
; 0.50 -
) 025 -
/ - - 0.00 ' , . .
) 200 600 800 1000
Steps

7 167 TUTI



From CS 229 notes
Section 9.2

Batch size — caveat

Minimize &£ by SGD
W=w—(wi§f ~ W—0d ng(xiayi)

Make a MC estimate i=1

m: mini-batch size

Alternative philosophy...

Smaller mini-batches
encourage stochasticity and
converge to flatter minima
which generalize better.

loss

trammg

Good ® “"Not so good
72 /67 global min global min UM



1512.03385

ResNets: Motivation

Training Error Testing Error

<
% g ~ 56-layer
E 10 E 10} \\,\J-~~\,,\_2A0:la)i cr
éo 56-layer ;
‘= 2
B .~ 20-layer

% ! 2 3 4 5 6 % | > 3 r 5 6

iter. (1led) iter. (1le4)

Complex model doing worse than the simple one on the training dataset!

Doesn’'t make sense from the bias / variance picture we built up earlier!
Implies an optimization problem.

T



The European Physical Journal C
Vol 73 3 (2013) 2304

Input representation

Collection of tracks:
X:i={1,...,n}

Each track has features:
X; e Rm

Jet has labels Y

Quark / gluon tagging: Y € {q, g}
Higgs tagging: Y € {H, top, QCD}
Top tagging: Y e {top, QCD}
b-tagging: Y € {b, c, I}

Want: p(Y1 X,, ... , X))

L .{:._ ." - - '
OATIAC -
edall ¥l v ey &5 / P . . .
EXPERIMENT >~ - RO e oton 1AL
LS | Y g \ N4




Ensembles

ATL-PHYS-PUB-2020-003

Good way to interpret models!! Let’'s us probe whether experiments are independent of each other

cC 104 E I I I I | I I I I | I I I I | I I I I 3
-% - ATLAS Simulation Preliminary -
.g)_), - Vs =13 TeV, tt ]
103 - -
° F ]
5 B i
3 10°F E
£ f -
Ao ’
—l = ~ —
10°F RNNIP
C DIPS ]
100 | | | | | | | | | | | | | | | | | | |
-.9 & 1 _2 l__ ! I | [ | I I I I | I I I I | I I I I __
oZ L ]
R e e e e e e e s i
o 0.6 0.7 0.8 0.9 1.0

75 167

b-jet efficiency

cC 102 = I I I I | I I I I | I I I I | I I I I E
-% - ATLAS Simulation Preliminary .
2 L Vs =13 TeV, tt i
5 | |
o
101 = E
B h T~—_ ]
| | S
100 | | | | | | | | | | | | | | | |
3 & = | [ I I | I I I I | I I I I | I I I I _:
1= 1.05F -
; % 1.00 E._I--I--I__I__I--I--I-_I__I--A‘#-;I__I_-I_-r‘}l--Iittl__-_l—-E
: 0.6 0.7 0.8 0.9 1.0

b-jet efficiency

TUTI


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

CS 229 Lecture

Debugging learning algorithms
—

Motivating example:

« Anti-spam. You carefully choose a small set of 100 words to use as
features. (Instead of using all 50000+ words in English.)

« Bayesian logistic regression, implemented with gradient descent, gets 20%
test error, which is unacceptably high.

m@ax > log p(y(i)lw(i), 0) — \|6]|?
i=1

« What to do next?

76 / 6 “_ITI


https://cs229.stanford.edu/materials/ML-advice.pdf

77 |1

CS 229 Lecture

Fixing the learning algorithm
—

Bayesian logistic regression:

m

max Z log p(y 1z, 0) — A||0||Pe, perhaps a jet classification ex
0 =1
Common approach: Try improving the algorithm in different ways.
— Try getting more training examples.
— Try a smaller set of features.
— Try alarger set of features.
— Try changing the features: Email header vs. email body features.
— Run gradient descent for more iterations.
— Try Newton’s method.
— Use a different value for A.
— Try using an SVM.

This approach might work, but it's very time-consuming, and largely a matter
of luck whether you end up fixing what the problem really is.


https://cs229.stanford.edu/materials/ML-advice.pdf

. o o . Lecture
Diagnostic for bias vs. variance

Better approach:

— Run diagnostics to figure out what the problem is.
— Fix whatever the problem is.

Bayesian logistic regression’s test error is 20% (unacceptably high).

Suppose you suspect the problem is either:
— Overfitting (high variance).
— Too few features to classify spam (high bias).

Diagnostic:
— Variance: Training error will be much lower than test error.
— Bias: Training error will also be high.

78 167 I


https://cs229.stanford.edu/materials/ML-advice.pdf

CS221 Lecture

Overfitting pictures

Classification Regression

nm



Deep Sets: for b-tagging

80

—>

NN track feature
extractor

®(X)

O(Xy)

O(Xp)

Sum: Permutation
invariant operation

NN jet feature extractor

Outputs
g b, c, |
> F = C
p) p)
Models correlations
between the tracks
b-jet

Jet Primary
Vertex
= -~
v :
Prompt / %
Tracks

\.

Jet -;.. A >




CS 231n Lecture 5: CNNs

CNNs

Translational invariance

Image Maps

Input

Fully Connected

/

Convolutions
Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Strong inductive bias: or domain knowledge we inject to efficiently converge to a solution.

ol AL

81 D= NS



Graphic adapted from Stanford
CS 231n Lecture 10: RNNs

Recurrent neural networks

'Y’” Model the jet as a sequence

o Efficient representation: same tranformation at every time step

» Sequential nature: variable # of tracks =» fixed dim vector for the jet

—»H—»“—» —_— —»ooo—»ﬂ

el Ay

82 TN



1706.03762

Transformers

“Any time you have a deep set you can substitute in a transformer as it’s always more

expressive.”
~ Peter Battaglia (or whatd remembered of the quote)

Probebiftes .\ _ Replace the Deep Sets Sum operation with a
Transformer (can still be permutation invariant)
arCh IteCtu re ( AGd 8 Norm ] Scaled Dot-Product Attention Multi-Head Attention
Feed
Forward Computes a [Maivul
——F— | s weight
—| AddFiel\;orm ) W Mask (opt.) : Scaled D;t-AProduct u&h
Forward g) Nx T Attenltlon I
Nix — Add &.Norm ’ﬁﬁ(ﬁﬁ(ﬁﬁ
—(Add & Norm ) = el r r r
Multi-Head Multi-Head
&ntii) &rﬁﬂj Weighted sum over inputs v K Q
(— ) — J And then... stack-them-up!
Positional D ¢ Positional .
Encoding Encoding Standard architecture for Natural Language
npu Outpu . .
Embesong Embegaing Processing (replacing RNNS): faster training -> better
] I optimization.
Inputs Outputs B

(shifted right)

Y d
83 SN



Input processing: AR

Ex: b-tagging input features

e HF
540 e fragmentation
820 = PU
e e GEANT
AR e tracks failing IP cuts
IBL hits
PIX1 hits
shared IBL hits
X_ — split IBL hits
| nPixHits

shared pixel hits
split pixel hits
nSCTHits
shared SCT hits

Training with AR(trk,jet) encodes a symmetry in the
input representation - and makes learning features

easier.
84
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b-jet: pr = 210 GeV, n = 1.81
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0.3 1
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0.0
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Saliency Maps

Model diagnostic



Saliency maps

1312.6034

What has DIPS learned about b-jets?

Vinputs D b o’ Ens
| |
Track 2 [ l |
———————— '— - [
: m trk features : 100 relu units [
Track 1 |
4 I—————Eag——'————-]| 100 relu units [
((ndets, 1, m) Ry §{EIU(1 m '
|
: | :
: (ndets, 1,100) ERLIVECIVRT TS
|
I (ndets, 1, 100) m m
| -
|
|
|

(ndets, nTrks, m)

l \
|

Sum over the
tracks

(ndJets, 128)

(ndJets, n, 128)

Tells us how to make the jet
more “b-like”.

Pp
Jepe + (1 = fop;

D, = log

86



Saliency definition

ATL-PHYS-PUB-2020-014

What has DIPS learned about b-jets?

87

e Consider b-jets failing the 77% WP

PP L B BN LA I SLSLELAN LSRN ILURAL
% 19" ATLAS Simulation Preliminary — tigefgﬂavourietf
2 ol vS=13Tev, d - b_;ets ]
5 f '

5107 E
g .,

w1072 n 3

104L
1055

106 L

e Average over jets with 8 tracks
e Sort the tracks by s, for the average

b-jets with 8 tracks failing the
77% b-tagging working point

ATLAS Simulation Preliminary

Vs =1
log AR

frac
log pT

Sz0

Largest s,

3 TeV, tt

0.4
los Vinputs Dy
—0.2
—o0.1
— —0.0
—-0.1

—-0.2

2 3 4 5 6
Tracks sorted by sqo

] 03
|
8 0.4

Smallest
Sdo



ATL-PHYS-PUB-2020-014

- b-jets with 8 associated tracks
failing a threshold corresponding
a I y to a 77% b-tagging efficiency

| | | | | | l | 0.4
nSCTHits | ATLAS Simulation Preliminary N )
PP | Vs =13TeV, fl | Vznputs Dy

What has DIPS learned about b-jets? nPixHits 0
. . hared SCT hits — -

v Want at least 5 high impact TeEEE R N

parameter tracks split pixel hits [ U1

v Wants harder leading track - as shared pelhis 1| Ho-
expected from b-decay split IBL hits ]

v Larger opening angle corresponding | s"*¢ """ 11| 1°°

to geometrical constraint from more IBL hits 11 Lo,

displaced tracks PIX1 hits | |

v Want good quality log AR 4 | 402
for displaced tracks log ple° -

-0.3
S20 —

S0 | | 1 a -0.4

1 2 3 4 5 6 7 8

Tracks sorted by s4
Largest sdo Smallest sqso )

D NS

Hit visualization
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Slide from CS231n Lecture 9
The Deep Learning Revolution

: Inception-v4
80 1 BO 1 -
Inceptxon-vB ° " ResNet-152
ResNet-.SO. ‘ VGG-16 VGG-19
751 751 ; ResNet-101 :
ResNet-34
R e é 10 ‘ResNet-18
g g [~ GoogleNet
G 5 ENet
C 65 1 g 651 |
= I BN-NIN
§ 0
60 1 60 1 l 5M 35M 65M a5M 125M  155M
BN-AIexNet
tAps=as Y B B B B B B B B OBE B 55 -AlexNet
50 NS AB A0 A9 2k 0 SRR s 5 10 15 20 25 30 35 40
ne y\ \~\\ ‘\0 AN D ‘: «, A9% N2 N '
pke* P*\e oV Q ‘;e \1(,(9 \l(’(;f,‘\e ‘\ ‘\e’\ Q"\OOQ"\OQ Operations [G-Ops]
Y 6o° 0’ & Qg‘*‘ rec®

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproducad with permission.
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CS221 Lecture

Choosing the right features

Feature extraction + learning

All predictors

Feature extraction

e Feature extraction: set / based on domain knowledge

e Learning: set f,, € F based on data

nm


https://stanford-cs221.github.io/autumn2019-extra/lectures/learning3.pdf

CS221 Lecture

Effect of hypothesis class size

All predictors

f
f* ®@—approx. error-¢ m : ) Feature extraction
)

As the hypothesis class size increases...

Approximation error decreases because:
taking min over larger set
Estimation error increases because:
harder to estimate something more complex

How do we control the hypothesis class size?

91 /67 “."1



Loss curves — what are the problems?

CS231n DS3

100

B0

60

accuracy

40

20

‘“WWM, N

|

- intensity = 0.3
~— intensity = 0.5

— intensity = 0.7

100 150 200 250 300
# minibatch

350 400

450

100

80

o
<

~— with adversarial training
— with no adversarial training

accuracy

40 +

20

0

0 50 100 150

200 250 300 350 400 450
# minibatch

Problem: Not shuffling data, periodical patterns in loss curve

c.35

c.30

bss

% &)

n1a-

C.03

C.co
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=00¢h

Problem: val set too small, statistics not

meaningful

2.25
—— train
2.00 - — vl

175 1
150 4
125 4
100 1
0.75 1
0.50 4

0.25 1

Get nans in the loss after a number
of iterations: caused by numerical
instability in models



Batch Normalization

Alternative Placements
OG paper

RelLu

Conv

BN

Fig. 1. Different arrangements of layers used in this study. (a)
arrangement 1, (b) arrangement 2 and (c) arrangement 3. (The Pooling
layer is dashed because it might not always be present after the third layer
in these arrangements.)

93 / us

Training Accuracy

Training Accuracy

0.8 4

0.6 -

0.4 4

0.2 4

0.0 4

0.8 4

0.6 -

0.4 4

0.2 4

0.0 4

AlexNet - Tiny ImegeNet

X

1912.04259

— Arrg #1
— Arrg #2
. Arrg #3
0 5000 10000 15000 20000
Steps
VGG-16 - Tiny ImageNet
X
— Arrg #1
3 — Arrg #2
Y
P ad Arrg #3
0 2500 5000 7500 10000 12500 15000 17500

Steps



Double Descent

1912.02292

width parameter = 3
w— Width parameter = 12
- width parameter = 64

o
o

e 0.5
-
W4
4
v
w
= 0.3

0.2

1 10 100 1k
Epochs
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