Introspection of Neural Networks

Looking inside the box of NNs

8.2.2023, TTT workshop TUM-IAS **Sven Krippendorf**(sven.krippendorf@physik.uni-muenchen.de, @krippendorfsven)

Neural network as a black box?

from a first glance: lots of components whose interplay is not clear.

Neural network as a black box?

From a first glance: lots of components whose interplay is not clear.

Content

- Capacity of a single neuron: the X-OR crisis
- Decoding what your network has learned in data representations in latent dimensions
- Quantifying and visualising correlations: saliency maps
- Learning dynamics: understanding what your networks learns and what it does not learn?

A single perceptron

Perceptron

Binary classifier = single neuron (perceptron)

- Our binary classifier is an example of a single neuron (perceptron)
- We study the capacity of this system, i.e. how much information can be stored by training a neural network.
- Enables you to understand classifying techniques and provides you with the tools to design algorithms with enhanced capability.
- Capacity = infinite (as each weight is real number)? No, as receiver is not able to examine the weights directly and not able to probe the inputs with arbitrary weights.

Perceptron Capacity

- K inputs for perceptron, N data points. Possible number of binary labels 2^N .
- What is the probability that all N bits are correctly reproduced?
- How large can N become, for a given d, while keeping this probability close to 1?
- Assumption: Generic position of data points (i.e. subset of K or less elements are linearly independent)
- Assumption: no bias for our perceptron
- T(N,K) number of distinct threshold functions

K=1, arbitrary N W=1 0 1 1 D X data points w=-1

T(N,1)= 2 2 threshold fcts.

Perceptron Capacity

- K inputs for perceptron, N data points. Possible number of binary labels 2^N .
- What is the probability that all N bits are correctly reproduced?
- How large can N become, for a given d, while keeping this probability close to 1?
- Assumption: Generic position of data points (i.e. subset of K or less elements are linearly independent)
- Assumption: no bias for our perceptron
- T(N,K) number of distinct threshold functions for fixed data points.

N=1, arbitrary K

only one point (both labelliss possible)

Perceptron Capacity

- K=2, N points continued
- We see that we cannot reach all possible threshold functions with a single perceptron!
- General case possible with appropriate recursion relations:

$$T(N,K) = 2\sum_{k=0}^{K-1} {N-1 \choose k} = \begin{cases} 2^N, K \ge N \\ 2\sum_{k=0}^{K-1} {N-1 \choose k} K < N \end{cases}.$$

 For K<N: can memorise N=2K labels but will fail to memorise more

Exercise: special situations appear with non generic points. Can you build the XOR function with a single perceptron?

Data	XOR
(0, 0)	0
(0, 1)	1
(1, 0)	1
(1, 1)	0

Introducing hidden layers allows to circumvent these limitations (Universal Approximation Theorem)

Neural Network Representations in Hidden Layers

Which data representation is used here? Is this data representation meaningful?

The inspiration

Meaningful embedding in second to last network layer

- Multiple layers are necessary to reach meaningful decisions (limitations of single perceptron)
- Embeddings deep in neural networks become meaningful (grouping data sharing the same properties):
- Word2Vec (England London = Paris France) (1301.3781)
- Applications in Atom2Vec → Periodic Table
- Classifying scents of molecules (GNN)
- Can we apply this to detect symmetries in Physics?

1807.05617

Finding symmetries with Neural Networks Solution

1. Step 1: Find invariances

- Set up classification problem (e.g. value of potential, Hodge numbers)
- Analyse position in embedding layer (directly or via dimensional reduction)

2. Step 2: Which symmetry is generating them?

• Analyse nearest neighbours in the pointcloud (dim. reduction if necessary) $p'=p+\epsilon_a T^a p$

• Appropriate regression problem to constrain all components of generators.

Examples Step1: Finding Invariances

Scalar potential and superpotential

Standard Higgs potential:

$$V(x, y) = V(r^2 = x^2 + y^2) = r^4 - ar^2$$

Classification problem:

Input: (x,y) Output:
$$V_k = \left[\frac{k}{5} - 10^{-3}, \frac{k}{5} + 10^{-3} \right]$$

Sample points for these classes

Examples Step1: Finding Invariances

Scalar potential and superpotential

Neural Network:

- Trains easily to accuracy > 95%.
- Visualise embedding layer representation (80-dim.) via dimensional reduction (here TSNE)

Finding Generators

Finding Generators

$$p' = p + \epsilon_a T^a p$$

- 1. Dimensionally reduce and center data
- 2. Pick hyperplane spanned by two random points $\in P$. This is the hyperplane the generator is acting on.
- 3. Filter points in this hyperplane (ϵ -neighbourhood)
- 4. Filter points close to each other
- 5. Use these points to constrain the generator T via:

$$p'-p=\sigma_H(p,p')/\|p\|(p'-p)Tp$$

Additional constraints are given by requirement that T acts in hyperplane.

- 6. Linear regression
- 7. Repeat (2-6) [all directions]. Apply PCA on the generators found.
- Algorithm is able to find generator (error depending on quality of data)
- Clear evidence for only one generator here for SO(2)

Finding Generators

Further Examples

- Successfully applied for SO(n) groups and subgroups
- Slight modification for subgroups (multiple pointclouds).

High dimensional input data

Rotated MNIST

- Generalisation to images
- Clear identification of dominant generator

$$G = \begin{pmatrix} -0.06 & -0.00 & -0.07 \\ 0.01 & -0.01 & 1.00 \\ 0.08 & -0.99 & 0.04 \end{pmatrix}$$

Saliency Maps

What does a trained NN do?

• It's a function, usually a chain of functions in feed-forward NNs:

$$f: \mathbb{R}^n \to \mathbb{R}^d, \ x \mapsto y = f(x)$$
$$f(x) = f_N \circ f_{N-1} \circ \cdots \circ f_1(x)$$

- Each function typically is a linear map, followed with a non-linearity.
- It's differentiable!
- How do our decisions depend on a particular feature in a neural network?
- This enables access to information on how much changes in one pixel change the output, e.g. gradients w.r.t. a single input pixel:

$$\frac{\partial f_a(\mathbf{X})}{\partial x_i}$$

Neural Network Dynamics

Can I choose hyperparameters without having to train NNs?

Why is understanding NNs important?

- To trust predictions of NNs, we need to understand their performance: systematic and statistical uncertainties. How are neural network prediction biased?
- Efficiency of training process: hyper-parameter tuning of large language models is very costly (e.g. you only want to run them at production)

NN as dynamical systems

- Can we understand supervised learning of neural networks?
 - How do features emerge and provide an appropriate dynamical framework?
 - Can we predict the network performance after training without having to train the network?
 - Can we make supervised training of neural networks more efficient (e.g. use less data, different optimisers, different architectures)

Neural Network

Training process — supervised learning

- NN architecture (e.g. fully connected/dense NNs), data (input/target output), loss function, optimizer fixed
- Randomly initialised NN = NN parameters drawn from appropriate distributions (often normal distributions appropriately rescaled according to the dimension)
- Loss function, e.g. mean-squared-error for regression task
- Update the NN parameters many times, e.g. using standard gradient descent:

$$\theta_i \to \theta_{i+1} = \theta_i - \eta \nabla_i \mathcal{L}(\mathcal{D})$$

Our NN as a function:

$$f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{d=1}$$
, $(t, x, \theta) \mapsto f(t, x, \theta)$

Neural Network

Dynamics at large widths

- The dynamics neural networks simplify in the infinite width limit.
- Work in continuous time limit:

$$\begin{aligned} &\theta_{i+1} - \theta_i = -\eta \nabla_{\theta} \mathcal{L} \\ &\dot{\theta} = -\eta \nabla_{\theta} \mathcal{L} = -\eta \nabla_{\theta} f(y) \nabla_{f(y)} \mathcal{L} \end{aligned}$$

Here: neural tangent kernel (NTK)

$$\dot{f}(x) = \nabla_{\theta} f(x) \ \dot{\theta} = -\eta \nabla_{\theta} f(x) \nabla_{\theta} f(y) \nabla_{f(y)} \mathcal{L} = -\eta \Theta(x, y) \nabla_{f(y)} \mathcal{L}$$

• Assumption: $\Theta(t, x, y) = \Theta(t = 0, x, y)$

Neural networks A closer look at NTK

- $\Theta(t, x, y) = \Theta(t = 0, x, y)$ can be checked empirically (JAX based neural tangents package)
- A wide range (but clearly not all) of NN dynamics can be described via NTK
- $\dot{f}_{\text{lin}}(x) = -\eta \Theta(t = 0, x, y) \nabla_{f_{\text{lin}}(y)} \mathcal{L}$

Wide reset trained by SGD with momentum on CIFAR-10 (from 1902.06720)

Neural Networks

Gradient descent with momentum

Modification of optimizer: gradient descent with momentum

$$\theta_{i+1} = \theta_i + v_i$$
, $v_i = \beta v_{i-1} - \eta \nabla_{\theta} \mathcal{L}$

 NN differential equation becomes second order (more familiar from scalar field dynamics)

$$\ddot{f}(x) + \frac{1 - \beta}{\sqrt{\eta}} \dot{f}(x) + \Theta(x, y) \mathcal{L}'(f(y)) = 0 \quad (\Delta t = i\sqrt{\eta})$$

Empirical NTK

Assumption of no evolving emp. NTK provides us with ODE for NN dynamics:

$$\dot{f}_{\text{lin}}(x) = -\eta \Theta(t = 0, x, y) \nabla_{f_{\text{lin}}(y)} \mathcal{L}$$

- This ODE can be solved in closed form.
- The evolution depends on the data, the architecture, the loss function, and the optimiser. All components are present and included in this framework.
- In this approximation, we can study their respective influence, e.g.: how does more data
 or more careful data selection change the training dynamics.
- My personal interest: Is there a simple phenomenological/physical framework to include non-linear effects (time evolution of the empirical NTK). How do these NN dynamical systems compare with physical systems?

Effects of data selection on test performance

- To demonstrate such effects, e.g. of different dataset sizes, we can use such analytical frameworks or use ensemble experiments.
- E.g.: comparing two dataset selection methods: Random or Random Network Distillation (strategy to select points which are most distinct for architecture in a given dataset)

Figure 4. Minimum test loss and final test loss of models trained on data-sets chosen by RND and randomly for several data-set sizes. Size of the error bars corresponds to the ensemble operation over models wherein the experiment was performed 20 times for a single data-set size.

Figure 1. Workflow of RND. A data point, p_i , is passed into the target network, \mathcal{F} and the predictor network \mathcal{G} , in order to construct the representations $\mathcal{F}(p_i)$ and $\mathcal{G}(p_i)$. A distance, d is then computed using the metric $\mathcal{D}(\mathcal{F}(p_i),\mathcal{G}(p_i))$. If $d>\delta$, the point, p_i , will be added to the target set \mathcal{T} and the predictor model retrained on the full set \mathcal{T} . If the $d\leq \delta$, it is assumed that a similar point already exists in \mathcal{T} and is therefore discarded. In our notation, $\langle \mathcal{T}, \mathcal{F}(\mathcal{T}) \rangle$ denotes the function set with domain \mathcal{T} and image $\mathcal{F}(\mathcal{T})$.

Conclusions

Looking under the hood of neural networks

- A single perceptron has limited functional capacity (XOR).
- Hidden layers potentially hold meaningful information about physical systems.
- To reveal these methods we can use dimensional reduction and then custom algorithms to reveal the structure (e.g. symmetries).
- Saliency maps to reveal how much features are influenced by other features (e.g. input).
- Neural network dynamics can be analysed empirically and analytically given some assumptions (e.g. empirical NTK being constant during evolution).

Further resources

- physicsmeetsml.org
- Journal: Machine Learning Science and Technology
- MIAPP summer school on machine learning in particle theory
- AIM@LMU: Al as a minor in physics and other subjects at LMU