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Neural network as a black box?

we have an analytic formula describing NNs

y = f(x,0)

while

from a first glance: lots of components whose interplay is not clear.
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Content

» Capacity of a single neuron: the X-OR crisis

 Decoding what your network has learned in data representations in latent
dimensions

* Quantifying and visualising correlations: saliency maps

e | earning dynamics: understanding what your networks learns and what it
does not learn?



A single perceptron

Literature: MacKay; Information Theory, Inference, and Learning Algorithms Chapter 40



Perceptron

Binary classifier = single neuron (perceptron)

* Our binary classifier is an example of a single
neuron (perceptron)

* We study the capacity of this system, i.e. how
much information can be stored by training a
neural network.

 Enables you to understand classifying
techniques and provides you with the tools to
design algorithms with enhanced capabillity.

» Capacity = infinite (as each weight is real
number)? No, as receiver is not able to
examine the weights directly and not able to
probe the inputs with arbitrary weights.




Perceptron
Capacity

K inputs for perceptron, N data points.
Possible number of binary labels 2"

 What is the probabillity that all N bits are
correctly reproduced?

« How large can N become, for a given d,
while keeping this probability close to 17

 Assumption: Generic position of data points
(I.e. subset of K or less elements are linearly
independent)

* Assumption: no bias for our perceptron
* T(N,K) number of distinct threshold functions
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Perceptron
Capacity

K inputs for perceptron, N data points.
Possible number of binary labels 2.

 What is the probability that all N bits are
correctly reproduced?

 How large can N become, for a given d, while
keeping this probability close to 17

 Assumption: Generic position of data points
(i.e. subset of K or less elements are linearly
independent)

* Assumption: no bias for our perceptron

* T(N,K) number of distinct threshold functions
for fixed data points.

6()() A
& Ol{wews{&”\‘(“\ » /’r - \
O ) Y
7 = ¢ (%)
N\ e

K 4 cxr]o -]Tmt)

NoWET
H—o—}-—«r——e—%}
/]

D[a]—q fﬁ \‘l"g w=-4

(/\/4) 2 2 Hweshold ‘()C‘I'S

N=1, arbitrary K

W =

TR =) TMEK)= L

Ov\ly one poih  (Loth Labelligs Possible)

. J
K=2, N points:
, p 2 A\ For 2 points, | can have
X, A X, Wt W,y 4 decision functions
' 7
%
7 , .
- X/, o % ()
N WA w, .
any choice in this area 1 £ (0,9)
labels above point as 0 \ . (O\
N V4 ]
O Yo W

O Y



Perceptron
Capacity

e K=2, N points continued

* \We see that we cannot reach all possible
threshold functions with a single
perceptron!

* (General case possible with appropriate

recursion relations: Exercise: special situations appear with non generic points.
o N >N Can you build the XOR function with a single perceptron?

— (N —1 — S ——— ey

I(N,K) =12 Z ( ' ) = ) gk N=1\p N Data | XOR Introducing hidden layers

k=0 k=0 \ L (O, 0) 'allows to circumvent \

' these limitations
(Universal Approximation |
Theorem)

o= =10

(
e For K<N: can memorise N=2K labels but (
will fail to memorise more (




Neural Network
Representations
IN Hidden Layers

Parameters of network:

{04} = {wij, br}
°

\
o /

Hidden layers

Output

Y; — activation (wijwj -+ bz)



The Inspiration

Meaningful embedding In second to last network layer

England @

* Multiple layers are necessary to reach meaningful
decisions (limitations of single perceptron)

 Embeddings deep in neural networks become
meaningful (Qrouping data sharing the same s o
properties):
- * 1807.05617
 Word2Vec (England - London = Paris - France)
(1301.3781) TR e T e
icati i i RS ). %{1;??3:?
» Applications in Atom2Vec — Periodic Table N

e (Classifying scents of molecules (GNN)
 Can we apply this to detect symmetries in Physics?
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Finding symmetries with Neural Networks

Solution

1. Step 1: Find invariances

» Set up classification problem (e.g. value of potential, Hodge numbers)

* Analyse position in embedding layer (directly or via dimensional reduction)
2. Step 2: Which symmetry is generating them?

* Analyse nearest neighbours in the pointcloud (dim. reduction if necessary)
da

p=p+el°p

* Appropriate regression problem to constrain all components of generators.
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Examples Step1: Finding Invariances

Scalar potential and superpotential

o Standard Higgs potential:

Vix,y) = V(r* = x* + y?) = r* — ar?

e Classification problem:

k

-3 k -3
Input: (x,y) Output: V, = |——107",— + 10

S

e Sample points for these classes
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Examples Step1: Finding Invariances

Scalar potential and superpotential

e Neural Network:

= max (O,?W + b)

* Trains easily to accuracy > 95%.

* Visualise embedding layer representation (80-dim.) via
dimensional reduction (here TSNE)
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Finding Generators



Finding Generators

1.
2.

3.

o B

6.
/.

« Finding generators in noisy point cloud P:
Dimensionally reduce and center data
Pick hyperplane spanned by two random points &€ P. This is the
hyperplane the generator is acting on.

Filter points in this hyperplane (e-neighbourhood)

Filter points close to each other

Use these points to constrain the generator T via:

p'—p=oy(p,p)|pl(p'—p)Ip
Additional constraints are given by requirement that T acts In

hyperplane.
Linear regression

Repeat (2-6) [all directions]. Apply PCA on the generators found.
* Algorithm is able to find generator (error depending on quality of data)
» Clear evidence for only one generator here for SO(2)

Points: 200, r~ N(1, 0.05), e=0.3
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Respective Standard Deviation

Finding Generators

Further Examples

» Successfully applied for SO(n) groups and subgroups
» Slight modification for subgroups (multiple pointclouds).

SU(2) generators SO(4) generators 50(3) generators

—e— Points: 100, r~ N(1,0.01), £=0.3
—e— Points: 200, r~ N(1, 0.01), £e=0.3
—e— Points: 1000, r~ N(1,0.1), e=0.3
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High dimensional input data
Rotated MNIST

* Generalisation to images

* Clear identification of dominant generator

Rotated MNIST

=
o
1

o
o

o
o
1

—0.06 —-0.00 -0.07
G=| 001 -0.01 1.00

0.08 —=0.99 0.04

©
AN
]

o
N

Respective Standard Deviation

o
o
1

1 2 3 4 5 6 7 8 9
PCA-Component

18



Saliency Maps




What does a trained NN do?

* |t’s a function, usually a chain of functions in feed-forward NNs:
fiR"—> R x o ¥ =f)
JX) = fy fN— o f1(x)

* Each function typically is a linear map, followed with a non-linearity.

e |t’s differentiable!
« How do our decisions depend on a particular feature in a neural network?

* This enables access to information on how much changes in one pixel change the
output, e.g. gradients w.r.t. a single input pixel:

of ,(X)
0X;

l

over to Jupyter Notebook



Neural Network Dynamics

Can | choose hyperparameters without having to train NNs?



Why is understanding NNs important?

* Jo trust predictions of NNs, we need to understand their performance:

systematic and statistical uncertainties. How are neural network prediction
biased”?

» Efficiency of training process: hyper-parameter tuning of large language
models is very costly (e.g. you only want to run them at production)



NN as dynamical systems

 Can we understand supervised learning of neural networks??

- How do features emerge and provide an appropriate dynamical framework”?

- Can we predict the network performance after training without having to
train the network?

- Can we make supervised training of neural networks more efficient (e.g. use
less data, different optimisers, different architectures)



Neural Network

Training process — supervised learning
NN architecture (e.g. fully connected/dense NNs), data (input/target output), loss
function, optimizer fixed

 Randomly initialised NN = NN parameters drawn from appropriate distributions
(often normal distributions appropriately rescaled according to the dimension)

* Loss function, e.g. mean-squared-error for regression task

 Update the NN parameters many times, e.g. using standard gradient descent:

0, — 0,,,=0—nV,ZL(D)

e QOur NN as a function:
f:RXR"XR"™ - R=1  (t,x,0) — f(t,x,06)

24



Neural Network

Dynamics at large widths

* The dynamics neural networks simplify in the infinite width limit.

e Work In continuous time limit:
Op1 —0;=—n VoL

* Here: neural tangent kernel (NTK)

f(x) = Vo f(x) 0= — NVef(x) Vo f(y) Vf(y)<>CZ = —n0O(x,y) Vf(y)g

. Assumption: O(t, x,y) = O(t = 0,x, y)

Jacot, Gabrial, Hongler
Lee, Xiao, Schoenholz, Bahri, Novak, Sohl-Dickstein, Pennington

- Novak, Xiao, Hron, Lee, Alemi, Sohl-Dickstein, Schoenholz



Neural networks
A closer look at NTK

e O(t,x,y) =0 =0,x,y) can
be checked empirically
(JAX based neural tangents
package)

* A wide range (but clearly not
all) of NN dynamics can be

described via NTK

¢ fin®) = =10 =0x,y)V, &

https://github.com/google/neural-tangents
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Neural Networks

Gradient descent with momentum

* Modification of optimizer: gradient descent with momentum
Oi1 =0, +vi, vi=pv_ 1 —nVy&L

l

NN differential equation becomes second order (more familiar from scalar field
dynamics)
I =p

NG

f() + ——=f(x) + O, L' (f(y) =0 (At =1iy/n)

27



Empirical NTK

* Assumption of no evolving emp. NTK provides us with ODE for NN dynamics:
fiin(X) — ﬂ@(t — O,X, y) Vflin(y)g

e This ODE can be solved in closed form.

* The evolution depends on the data, the architecture, the loss function, and the optimiser.
All components are present and included in this framework.

* |n this approximation, we can study their respective influence, e.g.: how does more data
or more careful data selection change the training dynamics.

® My personal interest: Is there a simple phenomenological/physical framework to include
non-linear effects (time evolution of the empirical NTK). How do these NN dynamical

systems compare with physical systems?



Effects of data selection on test performance

* Jo demonstrate such effects, e.g. of different dataset sizes, we
can use such analytical frameworks or use ensemble experiments.

F: RV - M

* E.g.: comparing two dataset selection methods: Random or [ -3 Tv i<
Random Network Distillation (strategy to select points which are | - W

most distinct for architecture in a given dataset) e PEEOFp0) =
% , j d>é
I ﬁ
Fuel MNIST Concrete Gait /
0.4 - & RND min 01214 ‘ : Aeirrame  T=TUp)
~®—- Random min 0.20 1 i v
0.3 - -Z-- RND final 0.10 A _ re-train | Q/
g -Zs-- Random final \ 0.15 4 QOHUT(T))
9 0.08 A
0.2 - Figure 1. Workflow of RND. A data point, p;, is passed into the
________ 0.06 - 0.10 4 target network, J and the predictor network G, in order to con-
ol 0 T . struct the representations F (p;) and G(p;). A distance, d is then
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 10 20 30 40 comp}lted using the metric D(F(pi), G(pi)). If d_> 9, the point,
Data set size Data set size Data set size Data set size pi, will be added to the target set 7 and the predictor model re-
trained on the full set 7. If the d < 4, it is assumed that a similar
Figure 4. Minimum test loss and final test loss of models trained on data-sets chosen by RND and randomly for several data-set sizes. point already exists in 7 and is therefore discarded. In our no-
Size of the error bars corresponds to the ensemble operation over models wherein the experiment was performed 20 times for a single tation, (7', (7)) denotes the function set with domain 7" and

data-set size. image /(7).



Conclusions

Looking under the hood of neural networks

* A single perceptron has limited functional capacity (XOR).
 Hidden layers potentially hold meaningful information about physical systems.

e Jo reveal these methods we can use dimensional reduction and then custom
algorithms to reveal the structure (e.g. symmetries).

» Saliency maps to reveal how much features are influenced by other features
(e.g. input).

* Neural network dynamics can be analysed empirically and analytically given
some assumptions (e.g. empirical NTK being constant during evolution).



Further resources

* physicsmeetsmi.org
e Journal: Machine Learning Science and Technology
« MIAPP summer school on machine learning in particle theory

 AIM@LMU: Al as a minor in physics and other subjects at LMU


http://physicsmeetsml.org

