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Outline

• Motivation for RL and intro to RL

• What is CERN and why RL is interesting there

• History of RL and examples 

• Conclusion and open questions
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Recently I read in the NY times…

• The Navy revealed the embryo of an electronic 
computer that it expects will be able to walk, talk, 
see, write, reproduce itself and be conscious of its 
existence. 

• From 1958 referring to the perceptron by Rosenblatt

• Let to a boost of AI

4

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
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2016: a milestone in artificial intelligence

Go: Lee Sedol was defeated by AlphaGo - using 
reinforcement learning
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Citations 

1997 chess: Gary Kasparov defeated by Deep Blue - (rule based)
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2018 @ Openai: solving Rubik’s Cube with a 
Robot Hand

• RL goes beyond what we can engineer by hand

6

https://www.youtube.com/watch?v=x4O8pojMF0w
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2018 @ Google: reducing energy consumption

DeepMind AI Reduces Google Data Centre Cooling Bill by 
40% - using RL
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https://www.nature.com/articles/d41586-018-06610-y
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2020: RL in industry (robotics)
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https://covariant.ai/news/automation-upgraded-robotic-goods-to-person-picking
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Now@Openai: Chat GPT (3.5)
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Huge societal impact ongoing
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What is RL?

Learn how to make good decisions under uncertainty
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Addresses fundamental challenge of (artificial) intelligence 
and machine learning:



Simon HirlaenderRL4AA KIT Seminar February 2023

Where does RL belong to?
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AI/Optimisation

Sequential decision making (SDM)


RL
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How does RL work?
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https://www.youtube.com/watch?v=spfpBrBjntg

Learns from experience.

Goal: Maximising expected cumulative reward 


max 𝔼[∑
t

Rt]

Action

At

Reward

Rt

State

St

Rt+1

St+1

Agent

We try to find a function which tells us what a good decision 
is in every state : s π(s) = a

https://www.youtube.com/watch?v=spfpBrBjntg
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RL and decision theory

• One step horizon offline RL  Prediction  - pattern 
recognition or supervised learning (SL)


• One step horizon RL  active Learning - e.g. system 
identification


• RL is a multi step optimization problem!

⇒ ℙ(Yi |Xi)

⇒

13

Strategy

Data

Modelling

Data

Strategy

Data

Information  decision→  Information→  decision→  Information→  …→
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Bellman ~1957: dynamic programming

• Bellman idea:

➡ Exact backwards recursion (if all transition probabilities are perfectly known)  unique 

solution for optimal policy


➡ Stochastic approximation: central and novel to reinforcement learning - temporal-
difference learning - using bootstrapping


➡ Watkins 1989: Solving the control problem on small problems Q-learning


➡ Basis of all value-based methods in RL - estimating the future reward of each state and 
construct a policy from there

→
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B A
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( , ) Q a s = 𝔼π[∑
t

Rt |At = a, St = s]
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Adapted from Sergey Levine

Direct optimization of π(a)
• Policy-based 


• Derivative free optimization


• Random sampling 


• Estimating the derivative
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https://miro.medium.com/max/2000/1*ff14zY0i4mi3HPa6pCeF4g.png
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Why Deep Learning?

• Complex sensorial input 
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Action

At

Reward

Rt

State

St

Rt+1

St+1

• Algorithms can select complex actions!
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Modern Deep Reinforcement Learning
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• Biased
• Can be offline


• Brittle 
• No guarantees


• Deterministic 


• Fast
• DDPG, TD3, DQN …

Actor/Critic

• High Variance


• Generally online


• Performance guarantees


• Local optima


• Stable


• Allows for stochastic policies 


• AC, TRPO, PPO

• SAC - Soft Q learning - stochastic

• D4PG - Distributional Q-Learning

• MPO

Value based relies on 
Bellman updates

Make more stable!

Policy based - 
stochastic optimisation

Reduce variance!
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RL main points

• Learn a policy  to maximise the expected 
return of a given problem through experience


• The reward (a scalar) - designed by us - tells the 
algorithm (the agent) - what is good and what not 

• We have to capture the problem well enough so 
that a good policy can be learned


• RL can handle delayed consequences

π(s) ↦ a
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Back to Go

• AlphaGo Zero: 3,000 years of human 
knowledge in 40 days


• AlphaGo Zero played 4,9 million 
games against itself!


• Only possible in simulations! 

• Several hundred years of real play- 
apart from other problems

19

Real systems: as little data a possible
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How to close the gap?

20

?
⇒

https://www.siliconrepublic.com/wp-content/uploads/2014/12/201411/large-hadron-collider.jpg
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Why not just using a simulator?

• Approximate Markov decision process (MDP) via 
simulation

➡ Can be complicated on its own


➡ Accurate simulations are generally too slow or intractable at all


➡ Imperfect model of MDP: transfer usually hard, long re-training 


• Possible solutions: Replan, learn a model (then 
plan), do both…or novel paradigms as meta 
reinforcement learning

21

↔
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Model based RL - separation heuristic
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Expansive

Real world

Cheap

Model

Information  (Plan)  Decision  Information  (Plan)  Decision  …→ → → → → →
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Algorithmic challenges of RL in the real world

• Sample efficiency

• Stability/Guarantees

• Run time

• Hyperparameter tuning

• Exploration/Safety

• …

• Consequently, applying RL rather complicated

• Solutions are specific
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Generating data in real systems is generally limited

Sample efficiency: how bad is it?
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Off-policy

Q-learning Actor-critic On-policy 


Policy gradient
Model-based

~ 100 interactions
~ 10e4 interactions

Evolutionary/

gradient free

> 1e6 interactions

Planning Optimisation

Tens of hoursHoursMinutes
Seconds

One Hour

Real time
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Outline

• Motivation for RL and intro to RL


• What is CERN and why RL is interesting there 
• History of RL and examples 

• Conclusion and open questions
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The world of particle accelerators

Security


• Cargo inspection


• Material characterisation 

30.000+ accelerators 

world wide

Industry


• Material / Surface/treatment


• E.g. computer chip production 


• Sterilisation of food

Fundamental research  (< 1 %) 


• Fundamental physics 


• Material studies


• Biology, chemistry 

Medicine 


• Isotop-production 


• Cancer diagnosis and treatment industry
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• Machines generate charged 
energetic particle beams - many 
applications 


• Complex set-up: many parameters 
to configure


• Optimisation algorithms and RL 
approaches are highly beneficial
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What is CERN?
• European Organization for Nuclear Research, founded in 1954, located 

near Geneva, Switzerland 

• “Science for Peace” 

• Largest particle physics lab in the world (12k+ users from 70+ countries) 

• Mission: providing and operating particle accelerators and infrastructure 

for fundamental research in high-energy physics 

• Current flagship: Large Hadron Collider (LHC), but there are many more 

accelerators and experiments at CERN 
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How CERN works
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https://www.youtube.com/watch?v=pQhbhpU9Wrg

https://www.youtube.com/watch?v=pQhbhpU9Wrg
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CERN accelerator complex

• Many challenges along the way

• Problem intrinsically hard to 

model:


• Low energy as space charge 
in LINACs 


• Electron-cooling set-up 


• Transmission-optimisation

• Alignment of electrostatic septa 

with many degrees of freedom

• …

LINAC 4
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How the story started: operating the

Low Energy Ion Ring (LEIR)

Supervision and operation:

• Complex system per design

• Many hours of manual 

maintenance/recovery of 
performance


• Introduction of automatic 
optimisation   

30
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The raise of numerical optimisers

• Use of classical derivative free optimisers: 
Powell, Simplex, etc… (from ~1960)


• Simple UIs, scaleable, robust…

• Enormous success

• Reducing operations from hours manual 

steering to below one hours automatic set-
up in below one hour

31

Manual Optimiser
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Powell 1964 - Optimisation

http://cds.cern.ch/record/2715365/

https://doi.org/10.18429/JACoW-IPAC2019-THPRB080
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Now optimisers in all flavours are standard tools
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Beyond classical optimization: Reinforcement Learning

• Optimisation problems not solved from 
scratch each time from the beginning 


• Existing data can be used

• Possible insights into the underlying 

physical problem

• Bigger class of problems can be addressed
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https://indico.psi.ch/event/6698/contributions/16532/
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Challenges of RL in accelerator control

• Goal:

➡ Quickly establish/recover performance

➡ Maintain performance


• Challenges:

➡ Not all processes can be modelled appropriately 

➡ Especially in the low energy regime lack of models

➡ Accurate models are slow


• State representation sufficient for learning (beam diagnostics)?

➡ Generally partially observable Markov decision processes (POMDPs)


• Sample efficiency - real world training feasible?

• Stability sufficient for real world training?

• Safety constrains?
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Outline

• Motivation for RL and intro to RL

• What is CERN and why RL is interesting there


• History of RL and examples 

• Resume and open questions
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BHN10 BPM60

BCT10

Linac3

LINAC3 - LEIR

LEIR
Beam

Beam

Beam

Starting with RL

• 2018: Implementation of first deep reinforcement learning 
algorithm @ LEIR - proof of principle


• Challenges from infrastructural side

• Proof of principle experiments

• Starting benchmarking on AWAKE (Advanced Wake Field 

Experiment) trajectory steering

36
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Benchmark: AWAKE trajectory steering

Target: trajectory steering - correct the trajectory in as little steps as 
possible.

Reward ∝ −
N

∑
i

Δx2
i

State = 

 

{Δx1, Δx2, . . . Δx10}
Δxi := xicurrent−xitarget
Actions = 

limited 

{k0, k1, k2 . . . , k10},
kmax

37

Position measurement

Target trajectory

Current trajectory

Δxi

Magnets for correction

Accurate model
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Sample efficiency of RL on AWAKE

• Ultra fast reinforcement learning

➡ Model-based using Gaussian processes

➡ Only a few steps on the real machine from scratch

➡ Overcomes limitations as non-stationarity and safety
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Amount of data on AWAKE
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algorithms


NAF

PER NAF

Model-based

Algorithms
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Model-based
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with convergence 
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LINAC 4 layout and overview

q Repetition rate 0.833 Hz (one shot/BP)

1

Beam at 160 MeV on dump

LINAC4 beam steering
LINAC4 (linear accelerator)

• 16 magnets 


•  ion beam

• 76 m

H+

Tailored Deep-Q-Learning ~250 steps
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Model-based Off-policy

Q-learning

Actor-critic On-policy 

Policy gradient

Evolutionary/

gradient free

~ 100 iterations > 1e6 iterations

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801

Model-based dyna Q ~100 steps

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801
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Deep fake AWAKE

Learning from (synthetic) images

Synthetic images
https://arxiv.org/abs/2209.03183
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https://www.frontiersin.org/articles/10.3389/fphy.2022.929064/

LHC Tune Feedback - beyond classical control

What can an RL agent do better? 

• Circular accelerator with 
Eigenfrequency Tune 


• Currently: PI-controller

• 16 magnets


• Minimise 

• Simulation

Q

ΔQ

41
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Beyond classical paradigms
• Learning to learn reinforcement learning

42

Learn to learn different 
task

Fast when learning a 
new task

Meta RL

Meta-train model-
free RL (MFRL)

Unknown

Few shot training 
MFRL

Policy (ANN)

Simulation 
Unknown

POMDP

 p(M)

Mi ∼ p(M)
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Meta Reinforcement Learning
• Learn on a distribution of tasks (high fidelity simulations) on AWAKE - 10 magnets, varying the quad-

strengths


• Using a stable and monotonic algorithm


• Adapt quickly to actual setting - few shot adaption
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Untrained ~ 18000 samples 40% success Meta-trained ~80 samples 100% success ~ few steps on the 
machine

Work with Lukas Lamminger Kain Verena

Model-based Off-policy

Q-learning

Actor-critic On-policy 

Policy gradient

Evolutionary/

gradient free

~ 100 iterations > 1e6 iterations

Demonstrated on the machine
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Outline

• Motivation for RL and intro to RL

• What is CERN and why RL is interesting there

• History of RL and examples 


• Conclusion and open questions
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Is RL the right tool? 
• Optimisers:


➡ Always re-explore - no memory  RL can


➡ Cannot handle delayed consequences  RL can


• Accelerators seem to be generally a good environment for RL:

➡ Generally known reward e.g. intensity (nevertheless might hard to design)


➡ The state defined through beam diagnostics


➡ The actions are mostly well designed


• Open issues:

➡ What if no sufficient state available? 


➡ How to deal with non-stationarity?


➡ How to improve the sample efficiency?


➡ Stability - how to tune the algorithms?


➡ What about safety?

→

→
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What has changed?

• Ecosystem and infrastructure has been established - 
modular systems - no general solutions


• We start to master many challenges:

➡ Sample efficiency, safety, stability…


• We are not using the full potential of RL

46
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We should use RL beyond optimization acceleration!

• (Model-based) Optimization replaced by RL

• Optimization is greedy!

• We don’t leverage the full power of RL

• RL has another goal

47
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Other avenues still to explore…

48

• Meta RL

• Multi task RL

• Contextual RL

• Multi-agent RL

• Hierarchical RL

• Distributional RL

• Inverse RL/Imitation learning

• …

Optimisation

RL possibilities
 RL in 
accelerator 

physics
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Why is RL not applied more often?

• General - not specific to accelerators

• RL is specific as many machine learning solutions

• Active paradigm:


➡ Training and evaluations are challenging


➡ Needs some experience


➡ Rethinking of classic approaches as optimisation


• Still mainly a research topic than a standard 
approach


• What can we do?
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More events like this!

50

Build a stronger community 
Collaborate more
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What “my” RL students do

51

Sabrina PhD 
thesis in Multi-
agent-RL

Juan PhD thesis 
in RL in robotics

Reuf PhD thesis in 
hierachical-RL

Sascha master thesis in 
interpretable RL in medicine

Myself Industry 
reduce power 
consumption of 
companies

Lukas master thesis in Meta RL
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Thanks for your 
attention
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My team: Smart Analytics und Reinforcement 
Learning - IDA Lab

• Smart analytics: Deep learning on time series, 
large language models, computer-vision, data-
science, knowledge graphs, precision 
medicine, ML in automation of processes in 
companies,…


• RL: 

➡ Goal: Establish RL in the real world 

➡ Research in academia and industry, teaching and 

supervision of students
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