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Learn how to make good decisions under uncertainty
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 We don’t necessarily develop new algorithms!

e | earn how to:

= identify and set up RL problems
= apply RL appropriately
= deal with common problems

* RL is not easy, don’t expect to understand or solve
things immediately

R
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* Pick the right problems!

= Ask: does this have a chance of solving an important problem? Does
my optimization problem have a chance to be solved? Do | solve the
right problem?
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e What is addressed by RL: position in Al, community

of researchers applying tools, data-driven dynamic
programming

e Little knowledge of probabilistic mechanism how
data and rewards change over time

* Probe and learn dynamics to find control
B. Recht, 2018
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e Pick the right problems (important and solvable)!

= What is my goal?

= What are my observables and my actions?

* Model the problem appropriately
* Training and evaluation of RL
e Are there better alternatives?
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Markov decision process - MDP
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Partially observable Markov decision
process - POMDP
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e We want to solve an SDM problem: Information— Decision— Information— Decision—-...

e Such problems are generally be stochastic!
e Consequently we build a feedback system not planing too far in the future:

« We define a state s, = h(o,,a,_y,0,_1,a,_»,0,_,...), as a function holding sufficient statistics
until time step 7 for a decision - (example pong)

« We look for a decision based on s, via: a, = 7,(ss,) - the policy - optimise an expected aggregate of
future rewards

World state Internal MDP
t—2 representation
S A
o1 e
Features —
\_ J
True dynamics < ]Z't(St) — at

e Rarely the observation o is the state s, the world state is, but often we assume it is!
e Generally POMDP - today MDPs!
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e POMDP generally P-Space hard (not on average)

e To find a proper state we have to solve the additional prediction
problem s, = h(o,,a,_1,0,_1,0,_5,0,_5...)

* In the non-stationary, finite horizon formulation the MDP has the
form (S, A, {P},, {r},, H, py) = Value-functions Q, (s, a) get time
depended = similar form of Bellman equations

e We can incorporate time into state e.g. § = (s, #) = standard MDP

e Generally Bellman equation nice in discounted, stationary

formulation = this is what we usually see and most libraries build
on this formulation
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e Mainly we have POMDPs

= Try to find a state which provides sufficient statistics to solve your problem
(internal representation of the agent) - not world state

* \Why is MDP so popular?
= |t always possible to make an MDP - by including sufficient information

= What if not Markov?

e What happens? Q-learning example
e Montecarlo - No need for Markov assumption

e History inclusion - RNNs, LSTMs

e Extreme: Bandits — no states (little knowledge about state)

m
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« MDP - discounted version: (S, A, R, , pg, 7)

= P(s',r|s,a) =P(S,=s,R =r|S,_; =s,A,_; = a)- dynamics function
= Mainly defined by system (and my state and reward definition)

e What do | want to solve? What’s the objective function? How to reach the
goal? The expectation of reward in the future!

T
1. Finite horizon: max [En[th] I I I
[

d =0

T
2. Infinite horizon: max E_lim [Z Y'R] ﬂ
T T— []
=0
1 Z
3. Average reward: max E_ lim _[ZRf]
/4 T—oo 1 =0 B

T
, Mostly: max E, lim [Z y'R] - solution: stationary policy 7(s)

T T— o0
=0
m H PARIS
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RL and optimization

e All said falls into the domain of optimization:

= An optimiser tries to find the arguments of a function to maximise the function value (optimization is
greedy!)

= RL algorithms look to find a mapping (the policy) from states to actions maximising the expected
cumulative reward rather than just a single optimal function value

If parametric function approximation is used, we try to find the values of the parameters of the approximated function
(either a value function or the policy directly) to obtain this mapping (this a classical optimisation problem).

e RL is comparable to calculus of variation (its origin is in classical mechanics
- HJB equation) instead of function optimization

Optimization RL

T
! maximise,Ey [ ) R(S, A, W)]
maximise (4} ), R(S, A, W) Y g """ Feedback structure takes
=0

bjectto: S, = (S, A, W noise into account
subject to: StJrl =f(St, A, W) Subject 1oz o, I 4 t)
A, = m(Sp Sy, - )

Often optimization is performed only for one step horizon:
maximise,R( - ,a, W)
IDALAB
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* The system generates noisy trajectories:

T, = 004101515 A1,550245 12 45 - - -

e From these probes we learn, but how?
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Rarely we have a full online learning problem

The problem either is naturally episodic or we train in an
episodic manner and are reset (adding absorbing state):

T, =0p; ™ @ Agi» 01451, A5 02451 45 -

Design the episodic training: /)'Q
= Is it an infinite horizon problem — stability forever? O/'O

= Is it a finite horizon problem with stationary dynamics? |% O<:8
What is the role of p,? - O—o

What is the role of a finite maximum length?

Exploration (finite time in infinite problem) - not part of the
problem




° (S!AvR’ ’:00’ y)

* The reward includes the goal and how to reach the goal!

* There is an equivalence class of problem formulations leading
to the same goal — differences in algorithmic efficiency

= Example: Negative/Positive/Normalised Reward

 Generally probabilistic:
P(r|s,a,s’) = Z P(r,s'|S, = s,A, = a)
S/

e Can be formulated in dependence of s and a or given as a
direct feedback signal

* Jo improve exploration or to solve sparse reward problems -
reward shaping during training!
A A |
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e Generally we don’t need discounting

e Introduced due to mathematical convenience:
convergence of cumulative sum of rewards as

N
1
alternative to mean reward: Z y'R, < , when

1 —y

[

R, is bounded in [0,1]
e Can be used influence training performance
 Not needed in naturally episodic problems!

e et TN '!!‘
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e Capture the right problem

 Formulate the MDP appropriately
e (Problem equivalent) Design has impact on RL algorithm
* Problem I solve = Designed MDP + Reward objective

m H ARIS
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State Action
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Information — decision — Information — decision — Information — ...

Data

/&elling
~_

Strategy

 One step horizon offline RL = Prediction P(Y;| X,) - pattern
recognition or supervised learning (SL)

e One step horizon RL = active Learning - e.g. system identification

 RL is a multi step optimization problem - we learn about the
dynamics of the world
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* Function approximation (FA):

= Parametric - compact apprOX|mat|on of a function using a parametrised
representation f(x) & f(x 0), where @ are parameters to be adapted

e Fixed representational power

e (Constant computationally complexity - fixed set of parameters

e Example: Artificial neural networks (ANNSs), linear approximations...

= Non-parametric - memory based:

1@~ @ = 3 ExxT()

Data x'€2 Kernel Weight

 No fixed representational power
e Parameters are not learned directly
e Computationally complexity grows with data

e Example: Gaussian processes, Kernel-based methods,...

m
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Problem

-»> RL
—»| Algorithm

State Action

A

SB: 6, 8, 9,10,11,13
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e Sample efficiency
e Stability

e Run time

 Hyperparameter tuning

e EXxploration

M
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e Trial and error

 Only rewards (labels of visited state, actions)

* Policy decides what we learn - usually censored
* Only valid estimates of things sufficiently learned

e
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e We know (s, | s, @) and the MDP is finite - frame work of
dynamic problem can be used (Bellman update is exact):

= Good theoretic properties
= Playground of classical control theory

= |f large, we use sampling: approximative dynamic programming

o If P(5', |5, a)is known, the dynamics is linear and we design a

quadratic dependence of s and a of the reward: analytical
solutions (the popular Linear Quadratic Regulator -LQR).

Stationary dynamics — Bellman — Ricatti equation - static state
feedback.

e Alternative solution methods?

= E.g. linear programming

m
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Hidden Markov Models - POMDPs

o Linear POMDP: believe state - O, = h(S,, A,, W)

-

[

Static output feedback is NP hard (linear in O and dynamics)
General POMDPs are PSPACE hard

* There are ways out - separation principle:

-

-

[

DALAE

........

Filtering §, = f({0,}) - prediction problem
Action based on certainty equivalence

Optimal filtering - if dynamics are linear and noise is Gaussian - Kalman
filtering - general belief propagation - LQG

Kalman filtered state - duality between estimation and control

Estimate state with prediction S, = h(z,), 7, are time lags

O
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e (5", r|s.a)unknown — approximative methods

e MDP finite: approximative dynamic programming

e General MDPs: Continuous A, S spaces

= Value function approximated with FA
= Policy approximated with FA

= Model of the MDP (learn from data or from simulator) use certainty equivalence

= Trained in a stochastic fashion

(e
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e RL as derivative free optimization:

= maximise, g« R(2) = maximise,, ,, [Ep[R(z)]

= Parametrise a distribution p(z; 0) = maximise ) E,,.¢)[R(2)]

= | ikelihood trick - estimate the derivative:

[ \% 0
VoJ(0) = | R(z2) Vyp(z; 0)dz = JR(Z) 0Pz )p(z 0)dz
u p(z; 0)
. Score function
‘ = | R(2) Vglog p(z; O)p(z 0)dz = E .4 [R(2) V glog p(z; 0)]

e Unbiased gradient estimate of J, if sample efficiently from p(z; @) and log p(z; 0)

 High variance
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 Objective if episodic: J(0) = V"(s,) := V(0)

= Stochastic search: pure random search, Simplex, Bayesian optimization

e Using the gradient: .
J 0 Trajectory probability Vi(sp) = E4l Z 7’th+1 |S; = 5o
. Vo) =) | e)lR(rﬁ f
T Trajectory reward

Stochastic gradient

VoV(0) = Y P(1;0)R(z) Vylog P(; 0) = E[R(?) Vylog P(7; 0))

Log likelihood trick
= Sampling of A, ~ p( - | 7,; 0)
e Handle probabilistic policies (example)
e High dimensional and continuous action spaces

e Reinforce algorithm considers temporal structure

= Finite difference approximation = Reinforce algorithm

m
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The value-function is introduced to compare policies
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 |f one had to identify one idea as central and novel to reinforcement
learning, it would undoubtedly be temporal-difference learning. (Sutton
and Barto, p.113)

VA(s) = E, L ) 7Ry IS, =51 = E[R, +yV(s)|S, = 5]
4

e Estimated via sampling: TD(0) error

° V(St) N V(St) _@[ (T }’V(SHI) — V(St) ]

Learn rate

e Can be used in episodic an non-episodic scenarios
e Immediate update of the estimator
e |f probabilities known - exact update

DAL Ak )
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Bellman equation:
Q*(s,a) = E[R, + max Q*(s’,a')]]

Bellman-operator is a contraction operator (LGorm) - converges to a fixed point

Here - stochastic approximation:
Q(s, a) = O(s, a) + a[R, — max O(s', a)]
al

M
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n(s) = argmax (s, a)

Two immediate consequences:

= Maximisation bias (expectation and maximisation don’t commute)

= Bias through bootstrapping

Inefficient update (compare to e.g. SL)

If FA is used contraction property might lost

Might diverge - deadly triad:
= FA
= Bootstrapping
= Off-policy
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e Value dominated

* Tries to mitigate maximisation bias (double networks)

e Stabilises training of networks trough tricks (random

batches from replay buffer, target network, action
noise) - (DDPG, TD3)

 More recent: distributional learning (D4PQ),
truncating trajectories (TQC)

IDALAB
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* Interplay of Bias and Variance
* Policy dominated: add baseline - the critic!

* DDPG: maximisation operator in Bellman equation is
approximated - the actor!

1-step TD oo-step TD width )
and TD(0) ~2-stepTD  3-step TD n-step TD  and Monte Carlo Temporal- ? of update /O\ Dynamic
ence /\ /\ programming

learning O O 00O O

Variance

AN H oo
‘/" "\l L"‘ |— — TR
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e Bias-Variance trade-off
 Regulated via Policy based and Value based

methods
e Policy gradient regulated via update-length of value
function
m —
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Value based relies on Policy based -

Bellman updates stochastic optimisation
RN
/ N,
Actor/Critic _
Make more stable! Reduce variance!
* Biased ¢ High Variance

» Can be offline Generally online
e Brittle

e No guarantees

Performance guarantees, stable

Local optima

» Deterministic (z(s) = argmaxQ(s, a)) o Stable
» Faster ¢ Allows for stochastic policies
e DDPG, TD3, DQN and derivatives... e TRPO, PPO

e SAC - Soft Q learning - stochastic
e D4PG - Distributional Q-Learning
e MPO

m
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e Value based: Approximate bellman updates - biased
* Policy based: high variance but stable
* Modern actor critic algorithms: bias-variance trade-

off
M H PARIS
().
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e We can have a simulation P(r, s'| s, a) which
models the real (true) MPD P(7, s'| s, a)

e \We can learn the MDP from real data using FA

e During training the RL algorithm we use IA’(r, s'| s, a)

as it would be P(r, s’| s, a) and hope to solve the
problem (certainty equivalence)

e \We can use a mixture of both

e Deal with consequences, try to learn }A’(r, s'|s,a) as
accurate as possible (system identification)

IDALAB
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 \WWhat degrees of freedom to excite to learn the control
problem?

* Model the uncertainties appropriately
= |Learn a model capturing the epistemic and aleatoric uncertainty (the noise)
= Take the epistemic uncertainty appropriately into account

= Examples: ensembles of ANNs, Bayesian ANNs, GPs...

* Having a model allows for planning

= Horizon is critical!

= Safety constrains can be taken into account
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Position

Current trajectory

Target trajectory

L R=—=() Ax)e

e 10 magnets — {kla k27 "‘klo}
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1932 |
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o 10 pOSitionS — {Axl, AXZ . Axlo} \
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Dyna style algorithm

Model: Bayesian ANN
bootstrapped ensemble

RL algorithm: SAC

Short roll-outs from real
interactions

Monotonic behaviour

Many hyper-parameters

AWAKE simulation

N
w
o

o
1 1

=N
o w (=]
o
s

cummulative steps
o
1

o 8
I 1

o

ep_length
s 8

[
o
!

https://arxiv.org/abs/1906.08253

#episodes

Dynamics Model

Adapted from https://arxiv.org/abs/1805.12114
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e |f convergence quickly - no long term planning
needed - solve infinite horizon problem with short
term planning (open loop)

e Plans action sequence (optimisation) and takes first
action only then replan

e Might retrain MDP model each step

Planning via Model Predictive Control
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Planning via Model Predictive Control

e Solves the infinite optimization problem (W ,=random
variable):

maximiseﬂt-[th(St,An Wyl S

t=0 Optimise finite horizon  performance
and robustness

T
~ maXimiseﬂ-t _Wt[ Z Rt(Sp Al‘a Wt) + V(ST+])]
=0

subject to: S, | = f(5,, A, W))
At — ﬂl‘(Sl" Sl‘—l’ ), SO == 3
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e Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

e Few shot RL learning on AWAKE

Train a model

L) 1 L] A
o -~ s o @

Apply action(s) to
system

Y T T T Y Y T T
0o 25 50 15 100 125 150 175 200

Shown at IPAC 2023 - Ultrafast
Reinforcement learning demonstrated on
AWAKE

Planning via Model Predictive Control

Optimization

M Based on: https://arxiv.org/abs/1706.06491v2 MOdeI (G P) PARIS
IDALAB ’@‘ LODRON __
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* Modelling the MDP - certainty equivalence

* Modelling epistemic and and aleatoric error

e Short horizons and feedbacks avoid model bias
e With a model safety concerns can be considered

/—M_d—l“ﬂ ARIS
() L‘,. .;: 1»: \-\

7

wcrv

( \ VERSITAT
IDALAB RL4AA Advanced Lecture February 2023 52 Simon Hirlaender &/ sALZBURG



M
IDALAB

ALYTICS SALZBURG

RL4AA Advanced Lecture February 2023

53

Simon Hirlaender



e You only can estimate things you have sufficiently
learned!

e Finite MDP: ¢ - greedy, what does this mean?

e (Gaussian noise - continuous actions

e Boltzmann exploration

 Theory: Bandit algorithms to study trade-offs (Book)

IDALAB
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A https://arxiv.org/abs/1703.03864 L | a—
. L] _"v - - /
_ Derivative free methods: Evolution Strategies as a /
g EJ Scalable Alternative to Reinforcement Learning |
32 (NES,CMA,.) (~ 180 days real time) N e
o 100,000,000 steps (100,000 episodes)
1 O X Online me‘thods Learning performance Er je Total Reward ¥ Episode ¥ (~ 15 dayS real t|me)
5@ (A3C)
g‘%’ - 10,000,000 steps (10,000 episodes)
* 10 x Policy-gradient methods: ‘ (~ 1,5 days real time)
0 2k LY 6k 8k 10k ___ 12k
¢ (TRPO)
5 _ - 1,000,000 steps (1,000 episodes)
< 10 x Replay-Buffer Value function (~ 3 h real time)
estimation
3¢ (Q-Learning, DDPG, NAF, SAC,...)
%l g 0 z v v v = i o : I I DD'PG
10 x Model-based RL methods T e 00| Siastops — RO
(Seconds) ~- MDGPS
025F PIGPS |
. . T ; —  PILQR-MDGPS
3 (MPO, Guided Policy Search, Dyna) N e S 3 020f e |
:? g 0.15
2 10 x Model-based shallow methods B —————————— e W == 2 o E
= % g olof
(no NNs) A S )
) . 0.05 +
v Fewshot GPs.. B T 10xgaps
30,000 steps (30 episodes)  -oos; - - - - -
(~ 5 min real time) # samples

https://arxiv.org/pdf/1703.03078.pdf

_Mﬂ-v Adapted from Sergey Levine :
R DRON
f@} UNIVERSITAT
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(a) online reinforcement learning

rollout data {(Si, a;, S'Iia 7"2)}

l

(s )
T k‘ update
<l | Tk41
rollout(s)
N\ f Tk+1
m
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rollout data {(Si,a;,s}, )}

(b) off-policy reinforcement learning

e
D

1

" =
4 a update
\ rollout(s) ﬂ-k' +1
1 Tkt1 |
56

e On-policy, off-policy, offline training

(c) offline reinforcement learning

{(Si7 a;, S;l?'ri)}

|
4 N

S, T
W
t a |

\ rollout(s) /

data collected once
with any policy

. |

: |

I . /7 N\
uffer | S, T

I| @

|[ learn J“ s a |

: 7T I \_ deployment )

training phase

https://arxiv.org/format/2005.01643
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e How to measure the performance of RL algorithms?

= Take different seeds!
= Return per episode on validation during training
= Episode length
e How to set up your algorithmic environment?

= Only start to implement, if there is no established library

= Debugging is tricky in Monte-Carlo experiments, start simple and
slowly increase complexity

= More in our tutorial

 The solution is on MDP + objective function
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e Stability

e Safety

e Sample-efficiency

e Sufficient observability
e Interpretabillity

[
m H Lo
(700 S
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e Exploration/Exploitation

e Sample-efficiency
 On-policy, off-policy, offline RL
e Training

e Limitations

JDRON
IDALAB RL4AA Advanced Lecture February 2023 59 Simon Hirlaender el



M
IDALAB

ALYTICS SALZBURG

RL4AA Advanced Lecture February 2023

60

Simon Hirlaender



/@N@N .+~ MPD 1
~ py = (D~ AAA() NP - MPD2 Contextual MDPs

\@N@N .-« MPD3

Multi task RL Meta RL
) )
'I'& ﬁr 'I'Q i& A
olo olo
% R ,
Common learning can Accelerates learning

improve sample efficiency enormously
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Few shot

POMDP training MFRL

* Awake simulation, varying A

quads
* Few shot stable adaption

 TRPO with some guarantees

Meta-train
MFRL

Policy (ANN)

AWAKE using 10 DoF (MAML)

AWAKE using 10 DoF (MAML)
I . —— Success Rate o0
o —= 0.0 A "t
/ Q P
/ 0.40 ) A AN 0.95
S \/
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-10 : ;:':: :::::: t:::i 005 —— Mean reward task 4
4 10 20 30 40 50 60 70
0 2500 5000 7500 10000 12500 15000 17500 Environment steps
Environment steps
Untrained ~ 18000 samples 40% success Meta-trained ~80 samples 100% success ~ few steps on the machine

~ 100 iterations > le6 iterations
< | «———— | >
Model-based Off-policy Actor-critic  On-policy Evolutionary/
Q-learning Policy gradient gradient free
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* Meta RL

 Multi task RL

e Contextual RL
 Multi-agent RL
 Hierarchical RL

e Distributional RL

* Inverse RL/Imitation learning

®
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 Overview of designing correct problem

 Function approximation
e Different RL solution approaches: Value, Policy,

MDP-model
 RL algorithmic challenges

e Beyond classical RL
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Selected Literature

. General:

aaaaaaaa

- A 2 Reinforcement Learning: An Introduction http://incompleteideas.net/book/the-book-2nd.html

e

Dee
Reinforcement
eaming
- Deep Reinforcement Learning: Fundamentals, Research and Applications https://link.springer.com/book/10.1007/978-981-15-4095-0

Reinforcement Learning:
‘Theory and Algorithms

- https://rlitheorybook.github.io/
. POMDPs:
- Algorithms for Decision Making https://algorithmsbook.com/
- Decision Making Under Uncertainty: Theory and Application: http://web.stanford.edu/group/sisl/public/dmu.pdf
- =8 Markov Decision Processes: Discrete Stochastic Dynamic Programming: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
B
. 4

Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119815068
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