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B3b: Anomaly searches in jet physics 

1 General information 1.2 Research profile of the Collaborative Research Center

1: Precision physics 2: E�ective theories 3: Models of New Physics

A: Higgs Physics Higgs boson produc-
tion in the SM

Higgs- and SM E�ec-
tive Field Theory, uni-
tarisation

Extended Higgs sectors, sim-
plified models

B: Top, QCD,
Electroweak
Physics, DM

Top quark and gauge
boson production,
physics of jets

E�ective field theories
for QCD and top quark
physics at colliders

Dark sectors, anomaly
searches

C: Flavour
Physics

Inclusive processes and
B ≠ B̄ mixing

Exclusive processes
and hadronic matrix
elements

New sources of flavour and
CP violation

Table 1.2: Structure of the CRC. The rows correspond to research areas, the columns correspond
to the methodologies that will be used to study them.

• develop concepts, methods and tools for precision calculations within quantum field theory,
to enable cutting-edge perturbative computations for broad classes of complex multi-particle
processes, and to advance the theoretical understanding of New Physics signal and background
hadron collider processes through resummation of large logarithmic corrections and novel
applications of machine-learning techniques.

It should also be noted that many of the concepts and tools developed within this CRC are not
limited to hadron colliders and therefore also lay important groundwork for the high precision
needed at potential future lepton colliders.

Finally, the researchers of the CRC will react to future experimental findings that are impossible to
anticipate now. Since the CRC creates a comprehensive and dynamic research infrastructure, it will
allow us to quickly adapt to any new development that may occur in particle physics phenomenology
in an e�cient and highly professional manner.

Structure of the CRC

The goal of the CRC is to create synergies and interactions between the di�erent research areas A,
B and C and between research methodologies employed in these research areas. The structure of
the CRC, explained in detail below and illustrated in Table 1.2, is essential for fulfilling its scientific
goal. In what follows, we first describe the three research areas and then discuss synergies generated
by common methodologies.

We note that the overall structure of the CRC, including the research areas and the methodologies,
has not changed significantly compared to the first funding period; in our opinion it is still very
viable. However, three projects which are part of the first funding period will be terminated,
and four new projects are proposed for the second funding period. In several projects principal
investigators were partially changed and in some projects the title has been changed slightly to
better reflect the scientific focus of the project in the second funding period. Further details about
terminated and new projects are provided in the sections below, where the relevant research areas
are discussed, and also in the description of the individual projects in Chapter 3 of this proposal.
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Machine learning 
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Collisions Level 1 trigger

40M events/sec

High-level trigger 
100k events/sec

1k events/sec

Data analysis

Trigger challenges
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Collisions Level 1 trigger

40M events/sec

High-level trigger 
100k events/sec

1k events/sec

Data analysis
New physics?

Anomaly detection data challenge: https://mpp-hep.github.io/ADC2021/

Trigger challenges



Anomaly searches in jet physics

6

Moreno et al., Phys. Rev. D 102, 012010 (2020) 



Representing jets
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See e.g. Cogan et al., JHEP 02 (2015) 118, de Oliveira et al., JHEP 07 (2016) 069, Komiske, et al., JHEP 01 (2017)110

Convolutional Net for QG

33 x 33 image = 1089 inputs 
2R x 2R = 0.8 x 0.8 in (", $)

19



The data: jets
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Kasieczka, Plehn et al., SciPost Phys. 7, 014 (2019)

SciPost Physics Submission

a new set of questions related to training data, benchmarking, calibration, systematics, etc.

2 Data set

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking e�ciency and momen-
tum smearing changes with ⌘. The fat jet is then defined through the anti-kT algorithm [27]
in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

pT,j = 550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within �R = 0.8,
and all top decay partons to be within �R = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |⌘j | < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

Particle information or additional tracking information is not included in this format.
For instance, we do not record charge information or the expected displaced vertex from the
b-decay. Therefore, the quoted performance should not be considered the last word for the
LHC. On the other hand, limiting ourselves to essentially calorimeter information allows us
to compare many di↵erent techniques and tools on an equal footing.

Our public data set consists of 1 million signal and 1 million background jets and can be
obtained from the authors upon request [29]. They are divided into three samples: training
with 600k signal and background jets each, validation with 200k signal and background jets
each, and testing with 200k signal and 200k background jets. For proper comparison, all
algorithms are optimized using the training and validation samples and all results reported
are obtained using the test sample. For each algorithm, the classification result for each jet

Figure 1: Left: typical single jet image in the rapidity vs azimuthal angle plane for the top
signal after pre-processing. Center and right: signal and background images averaged over
10,000 individual images.

4

Typical single top-jet Average top-jet Average QCD-jet 



The challenging test case: dark showers

9

Bernreuther, Kahlhoefer, Krämer, Tunney, P3H-19-019, JHEP 01 (2020) 162
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Average QCD-jet Average dark shower Average top-jet
SciPost Physics Submission

Figure 2: Average jet images in the plane of pseudo-rapidity ⌘ and azimuthal angle � for light
QCD (left), semi-visible dark jets (middle), and boosted top jets (right). See appendices A
and B for details on the event generation and the preprocessing steps for the generation of
the images.

Dynamic graph convolutional neural networks (DGCNNs) [38] are another class of pow-
erful classifiers which apply so-called edge convolutions to particle constituents, or particle
clouds, characterised by features such as energies, transverse momenta, or angular separa-
tions [39]. The edge convolution di↵ers from a convolution over an image in the definition of
the local patch that the convolution kernel observes. In an image, the local patch corresponds
to some neighbourhood of pixels. For an edge convolution, a local graph is constructed for
each point in the particle cloud from its nearest neighbours using a distance measure in the
space of input features. Calculating new nearest neighbours dynamically from the output of
the previous edge convolution allows for particles that are initially far apart to become close
in feature space already for the next convolution. In this way, long range correlations can be
accessed e�ciently with few convolutional layers and the network is potentially able to learn
the graph structure that o↵ers most information. For a cloud of particles representing a jet,
it appears natural that the correlation of particles which are not close in the initial features,
can be important for the classification of the jet. The dynamic update enables the network
to link those initially distant particles.

In the following, we will analyse and compare the classification performance of a CNN, a
LoLa network and a DGCNN for semi-visible jets against light QCD background jets. For
comparison, we also show results for the well-established benchmark task of top-jet identifi-
cation. The architectures of the CNN, the LoLa network and the DGCNN are described in
detail in appendix B.

3.1 Classification performance

Our neural networks are trained on 200k background and 200k signal jets, with a validation
split of 10%. For the signal generation we use the benchmark parameters introduced above, i.e.
rinv = 0.75, mmeson = 5GeV and mZ0 = 1TeV. The network performance results presented
below are based on an independent test set of 100k background and 100k signal jets. Note
that for the moment we use the same dark sector parameters for training and testing, even
though these parameters would be unknown in a realistic setting. We will return to the issue
of model dependence in section 3.2 and present a mitigation strategy in section 3.3.

The networks output two numbers for each jet, which can be interpreted as the proba-

6

The test case: dark showers

Bernreuther, Finke, Kahlhoefer, Krämer, Mück, SciPost Phys. 10, 046 (2021)



B3b: preliminary work and project plan
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• QCD or What? 

Heimel, Kasieczka, Plehn, Thompson, SciPost Phys. 6, 030 (2019)


• Better Latent Spaces for Better Autoencoders 

Dillon, Plehn, Sauer, Sorrenson, SciPost Phys. 11, 061 (2021)


• Autoencoders for unsupervised anomaly detection in high energy physics 

Finke, Krämer, Morandini, Mück, Oleksiyuk, JHEP 06 (2021) 161 


• Unsupervised hadronic SUEP at the LHC

Barron, Curtin, Kasieczka, Plehn, Spourdalakis, JHEP 12 (2021) 129


• Boosting mono-jet searches with model-agnostic machine learning 

Finke, Krämer, Lipp, Mück, JHEP 08 (2022) 015 


• Symmetries, Safety, and Self-Supervision

Dillon, Kasieczka, Olischlager, Plehn, Sorrenson, Vogel, SciPost Phys. 12 (2022) 6, 188


• What's Anomalous in LHC Jets? 

Buss, Dillon, Finke, Krämer, Morandini, Mück, Oleksiyuk, Plehn, e-Print: 2202.00686 [hep-ph]


• A Normalized Autoencoder for LHC Triggers 

Dillon, Favaro, Plehn, Sorrenson, Krämer,  e-Print: 2206.14225 [hep-ph]


• Anomalies, Representations, and Self-Supervision, 

Dillon, Favaro, Feiden, Modak, Plehn, e-Print: 2301.04660 [hep-ph]

https://arxiv.org/abs/2202.00686


B3b: preliminary work and project plan
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• WA1: Density-based and latent-space anomaly searches

• WA2: Anomaly scores with error bars

• WA3: Supervised and weakly supervised anomaly detection

• WA4: Benchmarking with physics problems

• WA5: Applications beyond LHC


