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® Gated Graph Sequence Neural Network (GGSNN) [1]:
® AGG: mean, UpD: Gated Recurrent Unit (GRU) cell
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® Gated Graph Sequence Neural Network (GGSNN) [1]:
® AGG: mean, UpD: Gated Recurrent Unit (GRU) cell

@ GraphConv [2]:
® AGG: sum, UrPD: NN
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= Jet assighment = Event classification

ft+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
5/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Training Data Q(IT

Karlsruhe Institute of Technology

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
6/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Training Data Q(IT

Karlsruhe Institute of Technology

® Monte Carlo simulations (2017)

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
6/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Training Data Q(IT

Karlsruhe Institute of Technology

® Monte Carlo simulations (2017)

® Region: > 6 jets, > 4 b-tagged jets,
single lepton channel
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& Total number of events ~ 190k
(60% training | 20% validation | 20% test)
® {t+bb ~ 53k
® {tH(bb) ~ 100k
® {iZ(bb) ~ 33k
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= Less than 41 % better than a random estimator
= Still a lot of room for improvements
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= Problem: not inherent in detected data (reconstruction-level)
= Solution: e.g., a GNN-based preclassifier (NLP) — cf. Slide 29f
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® Both rankings of the b tag’s importance are reasonable from a physics perspective
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® Both rankings of the b tag’s importance are reasonable from a physics perspective
® |n a further study: TCA'’s explanations are clearly more reasonable (cf. Slide 39)
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® Both rankings of the b tag’s importance are reasonable from a physics perspective
® |n a further study: TCA'’s explanations are clearly more reasonable (cf. Slide 39)

= Explainable Al reveals: GNNs behave as expected — GNNs are indeed reliable
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Conditions for Comparability Q(IT

Karlsruhe Institute of Technology

conditions realizable comments

a) same loss function BINARY CROSS-ENTROPY

b) same optimizer ADAM

c) same activation function RELU, SiaMoID

d) same feature space X since no differentiation between vertex,
edge and graph attributes for DNNs

€) same Ninput X due to d) and fixed input size of the DNNs

f) same nhigden

g) same Noutput
h) same Nirainable param. (= DOF) because of e)

= Comparison A: compare models with same nhiggen OF
= Comparison B: compare models with same Niainable param., Cf. Slide 49ff
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Analysis Strategy - Comparison A A“(IT
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Analysis Strategy - Comparison A A“(IT

Karlsruhe Institute of Technology

® |dea: compare models with same Npigden € Nhidden:
NuL = {1, 2}, Nhidden = {13,126, 39} ™-<M
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Analysis Strategy - Comparison A A“(IT

Karlsruhe Institute of Technology

® |dea: compare models with same Npigden € Nhidden:
N = {1, 2}, Nhiggen = {13, 26,39} ™Mt

® Deploy models that are as basic as possible:

® DNN: fully-connected feed-forward neural network
® GNN: GraphConv
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Analysis Strategy - Comparison A

® |dea: compare models with same Npigden € Nhidden:

N = {1, 2}, Nhiggen = {13, 26,39} ™Mt

® Deploy models that are as basic as possible:

® DNN: fully-connected feed-forward neural network
® GNN: GraphConv

® Enhance comparability by training GNNs with
different graph connectivity schemes
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15/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

edge weight = 0

P
st
S

Nt

edge weight = 1

KIT

Karlsruhe Institute of Technology

AN
AR
SN

=

edge weight = Mi,,, AR, AR™!
edge weight = random

initialization = M,,, AR, AR™!
initialization = random

— "tGNNs”
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Analysis Strategy - Comparison A

® |dea: compare models with same Npigden € Nhidden:

N = {1, 2}, Nhiggen = {13, 26,39} ™Mt

® Deploy models that are as basic as possible:

® DNN: fully-connected feed-forward neural network
® GNN: GraphConv

® Enhance comparability by training GNNs with
different graph connectivity schemes

® Number of compared models:
120 (GNNs) + 96 (DNNs) = 216
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Performance of GNNs (1 HL) ﬂ(IT

Karlsruhe Institute of Technology

CMS Simulation Work in Progress
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Performance of GNNs (1 HL) ﬂ(IT

Karlsruhe Institute of Technology

CMS Simulation Work in Progress
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Performance of GNNs (1 HL) A“(IT

Karlsruhe Institute of Technology

CMS Simulation Work in Progress
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GNN: Performance Improvement by Different Edge Weights

CMS Simulation Work in Progress

GNNapr,
(extended|zero])

GNN,
(extended|zero])

0 5 10 15 20 25 30 35
Mean performance improvement (%)
B random  WEE ARTD e M,
B one N AR
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GNN: Performance Improvement by Different Edge Weights

CMS Simulation Work in Progress

Baseline

GNNapr,
(extended|zero])

GNN,
(extended|zero])

0 5 10 15 20 25 30 35
Mean performance improvement (%)
B random mm AR! M,
B one N AR

= Edge weight = M, leads to the best GNN
performance
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GNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in Progress

) CMS Simulation Work in Progress
5 s 1 HL
M GNNapr,
(extended|zero]) w2 HL
GNN,
(extended|zero]) 0
0 5 10 15 20 25 30 35 5
Mean performance improvement (%) random AR AR Mo
B random mm AR! . M, Edge weight
B one N AR

= Edge weight = M, leads to the best GNN
performance
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Reliability Study Benchmarking Equivalent GNNs and DNNs
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GNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in Progress CMS Simulation Work in Progress
R -
z zlz
S GNN, Ze
(extendeii}-f;em]) E‘j% 10 w2 HL
i
GNN, ==
(extended|zero]) 0
0 5 10 15 20 25 30 35 &
Mean performance improvement (%) —9 random AR AR Mo
B random mm AR! . M, Edge weight
B one N AR
= Edge weight = M;,, leads to the best GNN = Beneficial to train edges with physically
performance non-meaningful weights
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GNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in_Progress CMS Simulation Work in Progress
<15 - L
zlz
GNN;, Z|z
(extendeii}-f;em]) [‘2% 10 = 2 HL
=S
GNN, ==
(extended|zero]) 0
0 5 10 15 20 25 30 35 =
Mean performance improvement (%) —9 random AR AR M.
B random mm AR! . M, Edge weight
B one N AR
= Edge weight = M;,, leads to the best GNN = Beneficial to train edges with physically
performance non-meaningful weights
= Edge weight = Mi,, seems to be the best choice
for tt+X event classification
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DNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in Progress
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DNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in Progress

DNNogp,
(default)

Baseline

DNN g,
(default)

DNNopp,
(extended)

DNNjh
(extended)

0 2 4 6 8 10 12
Mean performance improvement (%)

= Using relational information is also beneficial for the performance of DNNs
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DNN: Performance Improvement by Different Edge Weights ﬂ(l'l'

Karlsruhe Institute of Technology

CMS Simulation Work in Progress

DNNogp,
(default)

Baseline

DNN g,
(default)

DNNopp,
(extended)

DNNjh
(extended)

0 2 4 6 8 10 12
Mean performance improvement (%)

= Using relational information is also beneficial for the performance of DNNs
= But: ninpyt increases from 221 to 493 — significant increase in Nirainable param.!
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Combined Results of Representative Models (1 HL)

CMS Simulation Work in Progress

extended[M;,,] (13) 1
extended[AR] (13) 4

extended[AR™!] (13)

8
2
i

extended|random] (13)
extended (13) 1
extended|one] (13)

extended|zero] (13)1 ®

XS L
c-;:__
. G
L]
A
® e sGNN
& tGNN
A DNN
0.650 0700  0.750  0.800  0.850  0.900

tt+X Processes and Application of GNNs

19/20 January 09, 2023

Mean ROC-AUC

Feasibility Study

Reliability Study

Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

Benchmarking Equivalent GNNs and DNNs

KIT

Karlsruhe Institute of Technology

Summary and Outlook

Institute of Experimental Particle Physics



Combined Results of Representative Models (1 HL)

CMS Simulation Work in Progress

extended[M;,,] (13) 1
extended[AR] (13) 4

extended[AR™!] (13)

%
£

extended|random] (13)
extended (13) 1
extended|[one] (13) 1

extended|(zero| (13) ®

XS L
. G
A
e sGNN
& {GNN
A DNN
0.650  0.700 0750  0.800  0.850  0.900

tt+X Processes and Application of GNNs
19/20 January 09, 2023

Mean ROC-AUC

Feasibility Study

Reliability Study

Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

KIT

Karlsruhe Institute of Technology

® Large error bars for tGNNs and DNNs
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Combined Results of Representative Models (1 HL) \“(IT
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CMS Simulation Work in Progress
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Combined Results of Representative Models (1 HL) \“(IT
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CMS Simulation Work in Progress
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Summary and Outlook ﬂ(IT

Feasibility St

®  Event classifier theoretically improves by about 27 %
overall
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Summary and Outlook ﬂ(IT

Feasibility Study

®  Event classifier theoretically improves by about 27 %
overall

= About 76 % better than a random estimator
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Summary and Outlook ﬂ(IT
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®  Event classifier theoretically improves by about 27 %
overall

= About 76 % better than a random estimator
= GNNSs are generally suitable for tt+X event
classification v
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Summary and Outlook ﬂ(IT
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Feasibility Study
®  Event classifier theoretically improves by about 27 %

overall

= About 76 % better than a random estimator
= GNNSs are generally suitable for tt+X event
classification v

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view
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®  Event classifier theoretically improves by about 27 %
overall

= About 76 % better than a random estimator
= GNNSs are generally suitable for tt+X event
classification v

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view

= GNNSs are reliable/trustworthy +
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Summary and Outlook ﬂ(IT
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Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability
= GNNSs are generally suitable for tt+X event DOF
classification v data preprocessing effort

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view

= GNNSs are reliable/trustworthy +
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Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNSs are generally suitable for tt+X event DOF
classification v data preprocessing effort
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® The features identified as important by GNNX and TCA
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tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Summary and Outlook ﬂ(IT

Karlsruhe Institute of Technology

Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »
classification v data preprocessing effort

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view

= GNNSs are reliable/trustworthy +

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Summary and Outlook ﬂ(IT

Karlsruhe Institute of Technology

Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 %

GNN  DNN
overall
model performance & )

= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »

classification v data preprocessing effort & @

Reliability Study
® The features identified as important by GNNX and TCA
are reasonable from a physics point of view
= GNNSs are reliable/trustworthy +
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overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »
classification v data preprocessing effort & g

= Beneficial to prefer GNNs to DNNs

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view

= GNNSs are reliable/trustworthy +
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®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »
classification v data preprocessing effort & g

= Beneficial to prefer GNNs to DNNs
= Outlook: non-CMS paper currently prepared

Reliability Study

® The features identified as important by GNNX and TCA
are reasonable from a physics point of view
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Summary and Outlook ﬂ(IT
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Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »
classification v data preprocessing effort & g

= Beneficial to prefer GNNs to DNNs
= Outlook: non-CMS paper currently prepared

Reliability Study Outlook: develop a multi-task network?

® The features identified as important by GNNX and TCA ® Simultaneously trained on additional b jet assignment
are reasonable from a physics point of view and tt+X event classification

= GNNSs are reliable/trustworthy +

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
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Feasibility Study Benchmarking Equivalent GNNs and DNNs

®  Event classifier theoretically improves by about 27 % GNN  DNN
overall
model performance & )
= About 76 % better than a random estimator training stability t'e B
= GNNs are generally suitable for tt+X event DOF & »
classification v data preprocessing effort & g

= Beneficial to prefer GNNs to DNNs
= Outlook: non-CMS paper currently prepared

Reliability Study Outlook: develop a multi-task network?

® The features identified as important by GNNX and TCA ® Simultaneously trained on additional b jet assignment
are reasonable from a physics point of view and tt+X event classification

® Advantage: end-to-end model

= GNNSs are reliable/trustworthy + ) i e L
— easier to be retrained, optimized and distributed

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook
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Graph Network Formalism ﬂ(IT
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g
o
o
| GN block p—=+-- = GN block —» readout
o
OTT
input
time
GN block | X! X

edge block = vertex block global block
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Distribution of Input Variables
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Feasibility Study
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Outlier Criteria Q(IT

a) If the trained model is a random estimator (ROC-AUC = 0.5) or

pre post
+ =
b) ROC-AUC ¢ mean ROC-AUC +1.5 - 6P , o and Aa = oPe 4 — obot , 1o > 0.0025
CMS Simulation Work in Progress o CMS Simulation Work in Progress » CMS Simulation Work in Progress

@ on e Rt

E %0 — (Ag) = 0.0093 & &

] custom threshold: 08 08

200 Ao > 0.0025

150 0.6 0.6

100 0.4 04

-
50 02 J Mean ROC curve =+ 1 std 0.2 Mean ROC curve = 1 std
? == (area = 0.849 = 0.017 | + (69.9 = 3.4) %) (area = 0.8757 % 0.0010 | + (75.14 + 0.20) %)

=== Baseline

) —- 0.0 0.4
000 002 004 006 008 010 012 0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 L0
Ao FPR FPR

Left: Histogramm of the standard deviation difference pre- and post-removal of models with ROC-AUC values beyond the
range of mean ROC-AUC +1.5 - Ggr(()aC-AUC' Middle: Exemplary ROC curve of a trained model fulfilling criterion b). Right:
Exemplary ROC curve of a trained model fulfilling criterion b), which is not desired, if Ac > 0.0025 would be omitted.
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Training Information A“(IT
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hyperparameter setting

Minput/ Mhidden 24

NHL 18

Noutput (Of readout) 1 (binary), 3 (multiclass)
bias true

aggregation functions mean

global pooling method mean

maximum number of epochs 200

Aepoch = 15, ATPR = 0.01 or

EARLY-STOPPING Aepoch = 15, Aloss = 0.001

mini-batch size 200

optimizer ADAM (y = 0.01)

activation function (in output layer) SIGMOID (binary), SOFTMAX (multiclass)
loss function BINARY/CATEGORICAL CROSS-ENTROPY
number of repetitions 10
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Different Edge Weights and Model Architectures Q(IT
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CMS Simulation Work in Progress

g

§ GGSNNgeq (M, — AR) 1 —_——
]

o0

"Cﬁo

= GGSNN (M) 1 ———
g

S

=

GGSNNeq (AR — Miny) 1 °
GGSNNpara (AR, Miny) | -
GGSNN (AR) 1 °

0.870 0872 0874 0876 0878  0.880
Mean ROC-AUC
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Preclassification of Category Flags \“(IT
[ S\
® With a GNN-based preclassifier (NLP), an overall improvement of about 10 % is still achievable

data . AddB flags category flags

Z S RSN
e e ORS00
=4 i%é& 7 GLP —>class label

data
(pr, &, 1, M, E, b tag)

® Modeling of the dependency of the event classifier on the preclassification shows (cf. Slide 31ff):

®  Optimizing the preclassifier's TPR just by ~ 0.17 % — 2 % better event classifier
® But: a further optimization of the preclassifier's TPR by ~ 6 % would be required for improving the performance
of the event classifier by another 2%
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Preclassification of Category Flags Q(IT
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0.40 0
y 0.02 0
e 0
TRERI —> NLP-GGSNN —> 5- 50| —> v- |}
0.92 1 " \ .
i 009 0 ® True positive rate achieved with the GNN-based
0.01 0 aps . .
NLP-score-level  NLP-class.level preclassifier + the joint b tag/pr approach
CMS Simulation Work in Progress
GGSNNoq (extended, My, — AR) . category TPR (%)
GGSNN (extended, AR) L] AddB 7088
GGSNNg (extended;, M, — AR ]
o o HadTopB 65.61
GGSNN.q (AddBj, Miye — AR) - HadTopQ 7904
GGSNN,, (extended,, My, — AR) - adalop -
GGSNNuy (AddBy, My, — AR){ @ LepTopB 52.26
GGSNN (extended;, AR){ v Unknown 62.24
GGSNN (AddBj, AR)| —e— Lepton/Missing  100.00
GGSNN (extended,, AR) L]
GGSNN (AddB,, AR){ ‘e

0750 0775 0800 0.825 0850 0875
Mean ROC-AUC
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Dependency of the Event Classifier on the Preclassification \“(IT
[\
a I dea: Karlsruhe Institute of Technology
® Manipulate the category flags of an increasingly larger fraction of the events in the data set
® Modeling can be simplified to only modeling the additional b jet assignment correctly

® AddB-LTB modeling: @ AddB-X modeling:
® AddB flag < LTB flag ® AddB flag < any other category flag
@ Category flag with which it is manipulated in an
xj=(--- AddB=1 .- LTB=0 --)T event is chosen on the basis of the normalized
& (- AdB=0 --- LTB=1 - .)T preclassifier’s class specific confusion rate (CR),

1/2 and 0/2 rates
® The preclassifier confuses these categories the most
® Only 1 LepTopB jet but 2 AddB jets in each event
— AddB jet to manipulate is randomly chosen

CR
class (CRHadTops)  (CRiepTope)  (CRHadtopa)  (CRunknown) ( L?pt,o"> 1/2rate  0/2 rate
(CRMISSIHQ>
ﬁH(bE)) 36.89+0.19 51.23+0.19 8.49+0.08 3.397 +£0.033 0.0+£0.0 89+10 11+£10
ﬁZ(b_b) 32.58+0.14 52.97+0.16 10.84+0.12 3.608 +0.033 0.0+0.0 88+ 11 12+ 11
tt+bb 34.12+0.12 48.88+0.13 10.52+0.08 6.48 +0.05 0.0+0.0 84 +11 16+ 11
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Dependency of the Event Classifier on the Preclassification A“(IT
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Properties of the Manipulated Data Sets Q(IT
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fraction of manipulated objects in the categories

modeling strategy fraction of manipulated events AddB HadTopB LepTopB HadTopQ Unknown Lepton/Missing

10 500 0.0 1000 00 0.0 0.0
20 1000 00 2000 0.0 0.0 0.0
30 1500 0.0 3000 0.0 0.0 0.0
40 2000 0.0 4000 00 0.0 0.0
50 2500 0.0 5000 00 0.0 0.0
AddB-LTB 60 3000 0.0 60.00 0.0 0.0 0.0
70 3500 0.0 7000 00 0.0 0.0
80 4000 0.0 8000 0.0 0.0 0.0
90 4500 0.0 900 0.0 0.0 0.0
100 5000 0.0 1000 00 0.0 0.0
10 560  4.10 5.62 0.61 0.34 0.0
20 1121 817 11.31 1.21 0.66 0.0
30 16.80  12.24 16.97 1.79 1.00 0.0
40 2045  16.44 2063 238 1.34 0.0
AddBX 50 2807 2062 2819 298 1.70 0.0
60 3369 2474 3385 358 203 0.0
70 3932 2897 39.41 418 239 0.0
80 4491 3314 4500 476 271 0.0
90 5053  37.31 5060 5.5 3.07 0.0
100 56.13 4149 5618  5.94 3.40 0.0
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Reliability Study
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GNNEXxplainer
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GNNX Yy

m features
n verticesl

m features
= or or

.

(a) (b) (c)
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Taylor Coefficient Analysis A“(IT
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® |dea: perform a Taylor expansion on the model function ® at the expansion points z € R™

Mt +n’"q>(21,~-~,2) (1 =2)™ - (Xm = Zm)™
To (x1, xm)—Z Z AR o

. nil---np!
ny=0 nm=0 aXm 1 m

m m o
=®(z1,...,2Zm) +ZM(X/_Z/)"L%ZZMW_Z/)(X"_Z’()J“”

= %% = R
=1t | — —_—
= th = t)rjxk

= The Taylor coefficients t,, « € {x;, XXk, ... } are a measure of the importance of the corresponding features

36/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



GNNEXxplainer
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5 Addp .

Unknown .

Missing D
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LepTopB

Leptonq ® ®  Generator-level

AddB

HadTopB

LepTopB

Unknown

Missing

Lepton

HadTopQ

NLP-score-level

0294 0325 0.355

AddB .

3

Unknown 3

Missing °

Lepton .

LepTopB

HadTopQ

HadToB ®  NLP-class-level

0335 0369 0404

(o(F);)
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0438 0473

0396 0435 0475

(o(F);)

0318 0.357

GNNX:

Generator-level vs. NLP-score-level:
(Ar) = 171 (= 50.0%)

A = 3.00 (LepTopB)

Generator-level vs. NLP-class-level:
(Ar) = 114 (= 66.67%

6 )
Aryuax = 3.00 (HadToB, Lepton)

Unk
HTQ
MET

LTB

¢
HTB
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©  NLP-class-level

0265 0327 0390 0452 0515

(o (F)p)
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N pr

. b tag

. 7

. E

. M
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. HTQ

e MET

. LTB

. ¢

- ®  Generator-level HTB NLP-score-level
265 0.326 0.388 0.450 0.511 0.265 0.323 0.382 0.441 0.500
(o () (o))
CMS Simulation Work in Progress
GNNX:

Generator-level vs. NLP-score-level:
(Ar) = 0.62 (= 90.48%)
200 (M, E)

(ar)

A

Generator-level vs. NLP-class-level
(Ar) = 0.62 (
A = 1.00
(pr. 6,1, M.

b tag, HTQ, Unk)
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GNNX vs. TCA - Feature Importance

MET
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0517
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GNNX:

Generator-level vs. NLP-score-level

(Ar) 5 (= 7143%)
Argax = 7.00 (HTQ)
Generator-lovel vs. NLP-class-level
138 (= 7857
Ay = 4.00 (MET)
NLP-class-level
0285 0313 0402 0460 0518
(o(F);)
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S Simulation Work in Progress

. AddB
. MET
rr
> Unk
pr o HTB
HTQ o LTB
M . £
LTB "
¢ M
b tag 3 E
M . HTQ
B{ e b tag
ole ©  Generator-level s NLP-score-level
0005 0024 0043 0063 0082 0007 0041 0076 01l 0146
{tz) {t))

CMS Simulation Work in Progress

.
n
M
‘
E
o NLP-class-level
0.008 0.024 0.041 0.057 0.073
{tz))
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TCA:

Generator-level vs. NLP-score-level
(Ar) =185 (=7

Al

5 (= 714
5.00 (HTQ)

Generator-level vs. NLP-class
r) = 2.0 (= 69.05

Ariuax = 4.00 (pr. b tag)
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Evolution of the Feature Importance in AddB-LTB Modeling

CMS Simulation Work in Progress GNNX
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Second-Order TCA ﬂ(IT
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(a) Generator-level GNN (b) NLP-score-level GNN (c) NLP-class-level GNN
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GNNSs vs. DNNs
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Training Information
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hyperparameter

GNN DNN

Ninput (feature set)

N

Nhidden

Noutput (0f readout)

bias

aggregation functions

global pooling method

maximum number of epochs
EARLY-STOPPING

mini-batch size

optimizer

activation function (in hidden layers)
activation function (in output layer)
loss function

number of repetitions

102 (default)
221 (extended)
374 (default®)
493 (extended™)

13 (extended”)

{1.2}
{13,26,39} ™HLEML
1

true

sum

mean

200

Aepochs = 15, Aloss = 0.001
200
ADAM (y = 0.01)
RELU
SIGMOID
BINARY CROSS-ENTROPY

10

42/20 January 09, 2023

Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

Institute of Experimental Particle Physics



Training Duration ﬂ(IT
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CMS Simulation Work in Progress

=
Z 0.12 —— Mean of DNNs: (25.4 £ 0.5) min
s —— Mean of GNNs: (19.5 % 0.5) min
0.10 IS DNNs
0 GNNs
0.08
0.06
0.04
0.02
0.00

10 20 30 40 50
Training duration per repetition (min)

Note that these values are only of diminished expressive power and should rather be seen as a rough trend since the
utilized hardware was not solely used for processing the trainings.

43/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics



Convergence Speed and Degrees of Freedom
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model A

model B (baseline)

(Aspeed) (%)

<ANtrainabIe param.> (%)

SGNN1H|_
tGNN1HL
SGNNoy
tGNNoHL

DNN1L
DNN1L
DNNop.
DNNop.

-20.1+3.3
26+13
41+2.5
31+4

—94.33
—-88.47
-84.49
—-68.36
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Best Models Q(IT

Karlsruhe Institute of Technology

GNN DNN
edge weight Miny Miny My Miny
Mhidden (39) (26,26) (13) (13,26)
Nkrainable param. 1093 2107 6436 6813
ff

terainable param. - - 2405 2782
mean ROC-AUC 0.87441 +0.00051 0.87860 + 0.00035 0.86676 + 0.00050 0.87198 + 0.00044
identifier GNN7, GNNZ, DNN7, DNNZ,,
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Best Models ﬂ(l'l'

. . . Karlsruhe I f Technols
CMS Simulation Work in Progress arlsruhe Institute of Technology

Mean convergence speed 4 GNNi,
GNN;

0.028 o

t DNNjy

.024 t o DNNy,

& Performance of the best GNNs and

Mean test loss/ DNNs are comparable

Neff
tr 0.418)\ Generalization

ainable param.

® Biggest difference in convergence
speed and Nyainable param.

® Convergence speed appears to be

270753 rather independent of Nyainable param.

U847
2061417 0.903

Mean ROC-AUC

Nirainable param.
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TCA - Best GNNs A“(IT

Karlsruhe Institute of Technology

N CMS Simulation Work in Progress N CMS Simulation Work in Progress
é AddB ° é AddB
; Unk L§1\1ET
LTB o HTB .
HTQ . Unk ® Reasonable:
HT[; ° LT[; ®  Most important category flag: AddB
MET HTQ ® Most mportant kinematic feature: pr
pr| pr ® |east important feature: ¢
M| e M . .
b tag] © b tag ® Surprising: any category flag is more
£ e K important than any kinematic features
- o GNNj, X GNNgy,
07 . 0]
0.004 0.210 0.416 0.622 0.828 0.005 0.142 0.280 0.418 0.555
(t,) (ta)
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TCA - Best DNNs?

CMS Simulation Work in Progress

CMS Simulation Work in Progress

KIT

Karlsruhe Institute of Technology

Surprising: all category flags are

ranked in the lower half

— Possibly because of redundancy

— Already encoded in input vector due
to lack of permutation invariance

Least important feature: ¢

Most important feature: M.,
— Encoded in graph structure
— DNN also learned to look at that

£ M, £ M,
< x
L’t n .'_t n
pr pr
M M
b tag b tag
E ] AddB
HTQ{ o HTQ
AddB E
14 ¢
LTB MET
MET LTB
Unk HTB
HTB X Unk .
(.) r D‘\I'\IHII, (J DN‘\IZIIL
0.004  0.084 0164 0244 0324 0.004 0100 0195 0291  0.387
(t) (t)
2493 input features — 493 Taylor coefficients — considered “global” features instead and only considered non-padded features
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Analysis Strategy - Comparison B A“(IT

Karlsruhe Institute of Technology

® |dea: compare models with similar number of DOF
® 1.) How well do DNNs perform if their number of DOF is restricted to the number of DOF of GNN;,,, ?

® Ng={1,...,4}
®  Nhidden = {5.6, ..., 50} HLENHL
NN,
®  For each HL: consider only the model(s) that are closest to N HL =2107

tralnable param.

2 2) How well do GNNs perform if their number of DOF is expanded to the number of DOF of DNNZHL

® Ng={1,...,4}
®  Nhidden = {2,4,..., 12} HL<MAL
DNN3,,  DNNZ,
®  For each HL: consider only the model(s) that are closest to Ntramable';param =6813, Njamablez:;ram =2782

® Bonus: Can DNNs outperform GNN,,, if only the number of DOF is tuned?
® Ny =3
® Nhigden = {6, 13,26} M-
= Empirically motivated: rather increase number of hidden layers instead of number of hidden nodes

® Number of compared models: 27+26+18 = 71
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1.) DNNs with a Restricted Number of DOF AT

CMS Simulation Work in Progress Karlsruhe Institute of Technology
extended[Min] (26.26){ A  pDNN
z extended|M;,] (13, 26) e  SONN "
= extended[M;,] (11, 3,3, 7) A
% extended[M,] (4,8, 7, 3) e
& extended[M;,,] (4, 8, 9) i
£ extended|Ms,] (11, 4, 6) et
& extended[M;,] (4, 4, 10, 5) ™
extended[M;,,] (4. 8. 4, 9) i
extended| M| (11,2, 11, 2) s
extended|My,] (11, 4, 3, 4) et
extended|M;,] (4, 12, 5) A
extended|M;,] (11, 6) —_
extended[M;,,] (4. 9.5, 5) el
extended|My,] (4, 12) s
extended|My,] (11, 2, 3, 10) a
extended[M;,] (4. 4,8, 7) -
extended| M| (4, 10, 4, 6) i~
extended[Miy] (11) .
extended| My ] (4, 12, 4, 3) e
extended| M, (4) —
extended[M;,] (4, 6, 4, 12) _—
extended|Myy] (4, 5, 11, 3) ——t
extended|Myy] (4, 4, 6, 10) —_—
extended| My, ] (4, 2. 12, 6) ——
extended[M;,] (4, 9, 3, 11) _
extended[M;,,] (4. 2, 7. 11)
extended[Min] (4, 11)
extended[M,,] (4 .7
0.750 0.800 0.850 0.900

Mean ROC-AUC
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2.) GNNs with an Expanded Number of DOF Q(IT

Karlsruhe Institute of Technology

CMS Simulation Work in Progress

extended[M;,,] (25, 40, 50
extended (M, (35, 50, 15, 25
extended|[M,,| (35, 25, 40, 25

® sGNN
1 a DNN

)
)
)
extended|M,,,| (10, 40, 40, 30)
extended[M;,,] (50, 45, 10) 1
extended|[Mi,] (26, 26)
extended[M;,,| (25, 10, 15, 40) 1
extended|[M;,,] (35, 20, 10) 4
extended[Mi,] (25, 40) 1
extended[M;,,] (45, 10, 30) 4
extended|[M,,,] (45, 50, 5, 45) 1
)

)

)

)

)

)

)

)

)

Feature set (npidden)

extended[M;,,] (50, 50
extended|[M,,,] (5, 15 30, 25
extended[M;,,] (5, 10, 35, 25
extended[M;,,] (45. 5, 50, 45
extended[Miy,] (5,
extended[M;,,] (35, 5 2() 30

extended[l\l;,,\] 50
extended|[Mi,] (5, 5, 50, 20
extended|[ M, (13, 26

——

0.872  0.874 0876 0878  0.880
Mean ROC-AUC
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Bonus: Can DNNs Outperform GNN,,, ? ﬂ(IT

Karlsruhe Institute of Technology

CMS Simulation Work in Progress

extended| M, (26, 26
extended|M ,m) (13, 13,6 A DNN D ——
,vv](l‘ 26

[ ] sGNN —h—

Feature set (Nhidden

extended)
ext ended[i

T

extended,
extended]

———
—h—
—_——y
A
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—_—A
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—h—
—_——
——h—
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—
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—_—
S —
———y
——h—
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N
T —

M!Z(J E?tx 6, 26

0.860 0.865 0.870 0.875 0.880
Mean ROC-AUC
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Results - Comparison B Q(IT

Karlsruhe Institute of Technology

® Question 1.)

®  Many trainings contain outliers — rather not stable training?
® The majority of the models are only

®  slightly worse than DNNZ,, and
® around 1% worse than GNN;HL in the best case

® Question 2.)

® Only some expanded GNNs perform better than GNN,,,
® The best expanded GNN improves the previous best performance by (0.14 + 0.06) %

® Bonus: Can DNNs outperform the GNNy,,, if only the number of DOF is tuned? — No!

® Having more HLs does not seem to be beneficial
< (probably) regularization methods required for models with more HLs
® DNNs still perform at least (—0.75 + 0.10) % worse than GNNZHL
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