

Karlsruher Institut für Technologie

Calorimeter R&D for Higgs Factories -Inspiration for LHC Upgrades

Frank Simon

KIT – The Research University in the Helmholtz Association

KSETA Plenary Workshop, March 2023

Outline

- Higgs Factories
- Event Reconstruction in Future Experiments
- Highly Granular Calorimeters from a hadronic perspective
- Highly Granular Calorimeters for LHC
- Summary

Higgs Factories The next large Collider

Starting from what we know today:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Higgs Factories The next large Collider

Starting from what we know today:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Where do we go next?

Higgs Factories The next large Collider

Starting from what we know today:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Where do we go next?

The way charted by the European Strategy: **Precision!**

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The Higgs Boson

model-independent study of all accessible couplings

The Top Quark

a precise measurement of its properties. A possible window to new physics due to its high mass!

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

model-independent study of all accessible couplings

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The Higgs Boson

The Top Quark

a precise measurement of its properties. A possible window to new physics due to its high mass!

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

The Higgs Boson

model-independent study of all accessible couplings

Flavour Physics

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The Top Quark

a precise measurement of its properties. A possible window to new physics due to its high mass!

Electroweak Precision

push down the uncertainties on all electroweak measurements to push the SM to (hopefully beyond) its breaking point

The Higgs Boson

model-independent study of all accessible couplings

Flavour Physics

use extremely large data sets to explore, resolve and understand the puzzles in the flavour sector

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The Top Quark

a precise measurement of its properties. A possible window to new physics due to its high mass!

New Particles

searches for weakly coupled new particles with high luminosity / high energy in a clean

environment

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other

Full acceleration in a "single shot", unused particles are lost. No need for magnets

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other

Full acceleration in a "single shot", unused particles are lost. No need for magnets

Makes sense for light particles at high energy: Synchrotron radiation losses scale with E⁴ and m⁻⁴ and r⁻²

B

Circular Colliders:

Collision of two particle beams on circular orbits in opposite direction

Re-use of non-collided particles in future turns, acceleration can proceed over many revolutions. Need for bending magnets to keep particles on track.

B

 \bigcirc

Linear Colliders:

Collision of two particle beams from linear accelerators pointed at each other

Makes sense for light particles at high energy: Synchrotron radiation losses scale with E⁴ and m⁻⁴ and r⁻²

Event Reconstruction in Future Experiments

Ideas in broad strokes - for Higgs Factories

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Event Reconstruction in Future Experiments

Ideas in broad strokes - for Higgs Factories

Japan:

- ILC: 250 GeV (500 GeV 1 TeV with upgrade) **CERN** Future:
- FCCee: Circular collider, 90 GeV 365 GeV
- CLIC: Staged machine, 380 GeV 3 TeV

Detector Performance Requirements

What we should be able to do

• Typical final states: Involves H, W, Z - all decay predominantly into hadrons

=> Need to do very well with jet reconstruction.

Detector Performance Requirements

What we should be able to do

• Typical final states: Involves H, W, Z - all decay predominantly into hadrons

=> Need to do very well with jet reconstruction.

The classic criterion:

Separate Ws and Zs in hadronic final states

Need a jet energy resolution of **3%** (- 5%)

Detector Performance Requirements

What we should be able to do

• Typical final states: Involves H, W, Z - all decay predominantly into hadrons

=> Need to do very well with jet reconstruction.

The classic criterion:

Separate Ws and Zs in hadronic final states

Need a jet energy resolution of **3%** (- 5%)

N.B.: This is *hard*! x2 (or more) better than LHC experiments corresponds to $\sim 30\%/Sqrt(E)$ or better in relevant energy range

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Dreams...

• For *hadronic* (and all other) final states, we want to solve this problem:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Dreams...

• For *hadronic* (and all other) final states, we want to solve this problem:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Ideally: reconstruct every single particle in the event not just leptons + "cones of energy"

... Tools ...

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- The hardware to work with: A Collider Detector
 - Vertex detectors to identify heavy quarks and leptons
 - *Tracking system* to measure the momentum of charged particles via curvature in magnetic field
 - *Calorimeter systems* to measure energy of neutral and charged particles via total absorption
 - *Muon system* to identify muons, improve momentum measurement

... and Algorithms

- Particles decaying into quarks lead to jets: Multiple hadrons originating from final-state quarks

Frank Simon (<u>frank.simon@kit.edu</u>)

... and Algorithms

- Particles decaying into quarks lead to jets: Multiple hadrons originating from final-state quarks

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- Requires measuring the energies of different particle types
 - Charged hadrons (π^{+/-}, ...)
 - Electromagnetic particles (γ, e^{+/-})
 - Neutral hadrons (K_L, n, ...)

In a Nutshell

- The typical jet composition:
 - 60% charged (primarily π^{+/-})
 - 30% photons (from π^0 decay)
 - 10% neutral hadrons (n, K_L)

~ 10% - 20% / Sqrt(E)

~ 60% - 100+% / Sqrt(E)

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- Jet reconstruction with *Particle Flow*
- excellent measurement in tracker, negligible resolution

In a Nutshell

Confusion

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

In a Nutshell

Highly granular (imaging) calorimeters

- Segmentation finer than typical shower structure (X_{0}, ρ_{M})
- High-density materials, minimal gaps - in particular in ECAL: compact showers for improved separation

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

In a Nutshell

Highly granular (imaging) calorimeters

- Segmentation finer than typical shower structure (X_{0}, ρ_{M})
- High-density materials, minimal gaps - in particular in ECAL: compact showers for improved separation

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Putting concrete numbers:

- Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm
- W: $X_0 \sim 3 \text{ mm}, \rho_M \sim 9 \text{ mm}$

Separation in ECAL particularly critical: W as absorber!

In a Nutshell

Highly granular (imaging) calorimeters

- Segmentation finer than typical shower structure (X_{0}, ρ_{M})
- High-density materials, minimal gaps - in particular in ECAL: compact showers for improved separation

RSK PCB Semsar

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Putting concrete numbers:

- Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm
- W: $X_0 \sim 3 \text{ mm}, \rho_M \sim 9 \text{ mm}$

Separation in ECAL particularly critical: W as absorber!

When adding active elements: $\sim 0.5 \text{ cm}^3$ in ECAL, $\sim 25 \text{ cm}^3$ in HCAL

Highly Granular Calorimeters

An enabling technology - From a hadronic perspective

- SiPMs and microelectronics as game changers
- Real-world challenges

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (frank.simon@kit.edu)

Hadronic Calorimeters

Classical Solutions

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

• Light collected over large volumes, brought by fibers to PMTs in magnetically shielded volumes

Institute for

Data Processing

and Electronics

Silicon Photomultipliers

The Revolution

ATLAS TileCal PMT HPK R5900

- Key for scintillator-based calorimeters: Efficient detection of small numbers of photons
 - The classical tool: Photo multipliers

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (frank.simon@kit.edu)

Silicon Photomultipliers

The Revolution

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Institute for

Data Processing

and Electronics

SiPMs: A Game Changer for Calorimetry

Enabling unprecedented granularity

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

ATLAS tile calorimeter half barrel module: 23 "cells"

Frank Simon (<u>frank.simon@kit.edu</u>)

SiPMs: A Game Changer for Calorimetry

Enabling unprecedented granularity

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The CALICE Physics Prototype

A proof of principle

- "Imaging calorimeters": A new type of calorimeters
 - 3D (4D with amplitude, 5D with timing) images of particle showers ~ x1000 higher channel density as current detectors

Frank Simon (<u>frank.simon@kit.edu</u>)
The CALICE Physics Prototype

A proof of principle

- "Imaging calorimeters": A new type of calorimeters
 - 3D (4D with amplitude, 5D with timing) images of particle showers ~ x1000 higher channel density as current detectors

Different technologies: Si / **Scint+SiPMs** / gas

The CALICE Physics Prototype

A proof of principle

- "Imaging calorimeters": A new type of calorimeters
 - 3D (4D with amplitude, 5D with timing) images of particle showers ~ x1000 higher channel density as current detectors

The focus today: The SiPM-based **Analog Hadron Calorimeter**

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Different technologies:

Si / Scint+SiPMs / gas

Frank Simon (<u>frank.simon@kit.edu</u>)

The CALICE Physics Prototype

A proof of principle

- "Imaging calorimeters": A new type of calorimeters
 - 3D (4D with amplitude, 5D with timing) images of particle showers ~ x1000 higher channel density as current detectors

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Different technologies: Si / Scint+SiPMs / gas

Interlude: What do we need?

Integration requirements of large detector systems

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

minimal non-absorber volume, minimal tolerances

no / minimal cracks

10 - 100 M channels 10 000 m² active elements

Frank Simon (frank.simon@kit.edu)

Interlude: What do we need?

Integration requirements of large detector systems

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

10 - 100 M channels 10 000 m² active elements

Interlude: What do we need?

Integration requirements of large detector systems

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

AHCAL Response to electron TB on July-Aug. 2016 at DESY

Front-ends and Interfaces

Key elements to meet requirements

Physics prototype: front-end electronics, calibration / power interfaces outside of active volume

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

Front-ends and Interfaces

Key elements to meet requirements

interfaces outside of active volume

Technological prototype / final design: fully integrated front-end, compact interfaces

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Up to 6 x 3 HBUs controlled by single interface

Frank Simon (<u>frank.simon@kit.edu</u>)

B6A 4

Improving the original technology, ensuring scalability

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Frank Simon (frank.simon@kit.edu)

Improving the original technology, ensuring scalability

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Direct coupling of tiles and photon sensors

Institute for Data Processing and Electronics

Improving the original technology, ensuring scalability

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

Improving the original technology, ensuring scalability

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Fully integrated concept with embedded front-end electronics, calibration system

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

Improving the original technology, ensuring scalability

 From the first large-scale application of SiPMs to the "*SiPM-on-tile*" technology

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Physics Prototype

Direct coupling of tiles and photon sensors

embedded front-end electronics,

SMD SiPMs, modification of direct coupling

The Full Concept: The CALICE AHCAL Technological Prototype

A Demonstration of the Scalability of Highly Granular Calorimeter Technologies

 Fully integrated electronics, with HBU "base units" combinable to larger areas, compact control & services

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

The Full Concept: The CALICE AHCAL Technological Prototype

A Demonstration of the Scalability of Highly Granular Calorimeter Technologies

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

• Fully integrated electronics, with HBU "base units" combinable to larger areas, compact control & services

Frank Simon (<u>frank.simon@kit.edu</u>)

The Full Concept: The CALICE AHCAL Technological Prototype

A Demonstration of the Scalability of Highly Granular Calorimeter Technologies

- Fully integrated electronics, with HBU "base units" combinable to larger areas, compact control & services
 - SiPMs / scintillators on other side of board

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (frank.simon@kit.edu)

Exercising scalability

- Mass production for a new 0.5 m³, 22k channel prototype
 - 24k tiles produced & wrapped

injection molding of PS based scintillator tiles

Exercising scalability

- Mass production for a new 0.5 m³, 22k channel prototype
 - 24k tiles produced & wrapped

semi-automatic wrapping of scintillator tiles

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

injection molding of PS based scintillator tiles

10/2017 - 01/2018

Exercising scalability

- Mass production for a new 0.5 m³, 22k channel prototype
 - 24k tiles produced & wrapped

automatic placement of tiles on electronics board (HBU), fully assembled with SiPMs and ASICs 11/2017 - 02/2018

semi-automatic wrapping of scintillator tiles

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

injection molding of PS based scintillator tiles

10/2017 - 01/2018

Exercising scalability

• A multi-step QA procedure

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria - all batches accepted

Frank Simon (frank.simon@kit.edu)

Exercising scalability

• A multi-step QA procedure

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria - all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Exercising scalability

• A multi-step QA procedure

test and calibration of all channels with cosmics

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria - all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Exercising scalability

• A multi-step QA procedure

integration of layers & interfaces, test in beam at DESY

test and calibration of all channels with cosmics

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria - all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Full Prototype in Particle Beams Demonstration of Performance

• Test beam at CERN SPS - the smoothest CALICE test beams ever.

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Full Prototype in Particle Beams Demonstration of Performance

• Test beam at CERN SPS - the smoothest CALICE test beams ever.

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

muon track

Developing the Technology Further In the Context of Higgs Factories

• Electronics and thermal design currently optimised for linear colliders:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$

power pulsing possible:

most of the electronics off for 99% of the time

Developing the Technology Further In the Context of Higgs Factories

• Electronics and thermal design currently optimised for linear colliders:

- At circular colliders (FCC-ee): Continuous collisions toughest conditions at the Z pole: $\Delta t_b = 20 \text{ ns}$, physics rate ~ 100 kHz
 - Need continuous readout -> No power pulsing possible, potentially significant increase in power
 - \Rightarrow Significantly higher data rates: more sophisticated data concentration and transmission

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$

power pulsing possible:

most of the electronics off for 99% of the time

Consequences for cooling?

Advances in power efficiency?

Highly Granular Calorimetry at LHC

Pushing the Technology to its Limits?

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Highly Granular Calorimetry at LHC

Pushing the Technology to its Limits?

Seoul, ca. 2013:

Dave Barney, CERN

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Cool technology. Would that work at the LHC?

Doubt it... Not rad-hard enough, too much data, need cooling - can't be compact enough...

Frank Simon (<u>frank.simon@kit.edu</u>)

FS

The Conditions at the HL-LHC

The CMS Endcap Calorimeter

• Extreme radiation:

VBF ($H \rightarrow \gamma \gamma$) event with one photon and one VBF jet in the same quadrant,

• High particle No timing cut density: VBF jet

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Timing and granularity as a way to cope with pileup!

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!

Frank Simon (<u>frank.simon@kit.edu</u>)

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!
- You have to be able to pay for it!
 - \Rightarrow Use SiPM-on-Tile wherever allowed by radiation.

Frank Simon (<u>frank.simon@kit.edu</u>)

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!
- You have to be able to pay for it!
 - \Rightarrow Use SiPM-on-Tile wherever allowed by radiation.

The key: Ensuring sufficient light yield and S/N. Two main elements to this:

- Radiation hardness of SiPMs
- Radiation hardness of scintillator

Frank Simon (<u>frank.simon@kit.edu</u>)

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!
- You have to be able to pay for it!
 - \Rightarrow Use SiPM-on-Tile wherever allowed by radiation.

The key: Ensuring sufficient light yield and S/N. Two main elements to this:

- Radiation hardness of SiPMs
- Radiation hardness of scintillator

operation "in the cold": -30 C via CO₂ cooling

Frank Simon (<u>frank.simon@kit.edu</u>)

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!
- You have to be able to pay for it!
 - \Rightarrow Use SiPM-on-Tile wherever allowed by radiation.

The key: Ensuring sufficient light yield and S/N. Two main elements to this:

- Radiation hardness of SiPMs
- Radiation hardness of scintillator

operation "in the cold": -30 C via CO₂ cooling profit from SiPM advances in last decade: "trenches", lower DCR use high-quality machined scintillator in critical areas

> Institute for Data Processing and Electronics

Frank Simon (frank.simon@kit.edu)
A High Granularity Calorimeter for LHC

What we need to make it work

- It has to survive!
 - \Rightarrow Use silicon as active element!
- You have to be able to pay for it!
 - \Rightarrow Use SiPM-on-Tile wherever allowed by radiation.

The key: Ensuring sufficient light yield and S/N. Two main elements to this:

- Radiation hardness of SiPMs
- Radiation hardness of scintillator

- You need to be able to get the data out!
 - Data concentrators within the detector volume

operation "in the cold": -30 C via CO₂ cooling profit from SiPM advances in last decade: "trenches", lower DCR use high-quality machined scintillator in critical areas

> Institute for Data Processing and Electronics

Frank Simon (frank.simon@kit.edu)

From CALICE to CMS

The HGCAL - Technology Transfer & further Development

• The developments in CALICE have paved the way for a number of applications of highly granular calorimeters and related technologies in HEP

Most prominent: The CMS Endcap Calorimeter Upgrade HGCal

From CALICE to CMS

The HGCAL - Technology Transfer & further Development

• The developments in CALICE have paved the way for a number of applications of highly granular calorimeters and related technologies in HEP

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

the way for a number of applications of highly granular calorimeters and related technologies in HEP

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The CMS HGCAL

Pushing current limits on many fronts

Both Endcaps	Silicon		Scintillator
Area	~620 m²		~370 m²
Channel Size	0.5 - 1.2 cm ²		4 - 30 cm ²
# Channels	~6 M		~240 k
# Modules	~27000		~4000
Op. Temp.	-30 C		-30 C
Per Endcap	CE-E	Si	CE-H Si+Sci
Absorber	Pb, CuW, Cu	Stainless steel,	
Depth	27.7 X ₀	10 λ	
Layers	26	7 14	
Weight	23 t	205 t	

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (frank.simon@kit.edu)

The HGCAL Sensors & Front-end

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

The HGCAL Sensors & Front-end

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The HGCAL Sensors & Front-end

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

and Electronics

The HGCAL Sensors & Front-end

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Modules & Readout

Turning it into a system

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Modules & Readout

Turning it into a system

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Modules & Readout

Turning it into a system

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Absorber and Mechanics

Holding it together

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Sliding wedges:

Stainless steel supports designed to take the total detector weight. Sliding feature will allow to cope with a thermal contraction as one end of the wedges will be at -35°C while the other end will be at 18°C

Frank Simon (<u>frank.simon@kit.edu</u>)

Summary & Outlook

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Data Processing and Electronics

The Role of KIT Calorimeter R&D & CMS

- Strategic detector R&D implementation of the ECFA detector R&D roadmap A new collaboration for calorimeter R&D is being formed - active in coordination. Key technological contributions:
 - Solving the circular Higgs Factory challenge: Electronics systems, data concentration, DAQ Advanced algorithms - from CPUs to FPGAs; applications of ML/AI
- The HGCAL an opportunity to expand the KIT role in CMS.
 - Mechanics & services (CuW Baseplates, Cooling manifolds, ...)
 - The backend system DAQ and trigger based on Serenity boards: Hardware & algorithms

Summary and Outlook

- Highly granular calorimeters are central components for future Higgs factory detectors \bullet
- Enabled by silicon photomultipliers and capable ASICs
 - Require ultra-compact interfaces and low power, scalable technologies suitable for mass production
- Key elements demonstrated by the CALICE collaboration but challenging (and interesting!) developments remain
- The CALICE technology has been adopted by CMS for the Phase II HGCAL upgrade and is being pushed to a whole new level:
 - Extreme radiation, enormous data volumes
- This project is happening now and it has to succeed! KIT will make decisive contributions.

Summary and Outlook

- Highly granular calorimeters are central components for future Higgs factory detectors
- Enabled by silicon photomultipliers and capable ASICs
 - Require ultra-compact interfaces and low power, scalable technologies suitable for mass production
- Key elements demonstrated by the CALICE collaboration but challenging (and interesting!) developments remain
- The CALICE technology has been adopted by CMS for the Phase II HGCAL upgrade and is being pushed to a whole new level:
 - Extreme radiation, enormous data volumes
- This project is happening now and it has to succeed! KIT will make decisive contributions.

~ 25 years from initial ideas to first full-scale application with HL-LHC startup. And: the blueprint for future calorimeters in HEP.

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Institute for Data Processing and Electronics

Reconstructing Energy

Using granular information

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

 Hadronic energy resolution suffers from complexity of hadronic showers due to differences in detector response to hadronic and electromagnetic showers

Frank Simon (frank.simon@kit.edu)

Reconstructing Energy

Using granular information

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

 Hadronic energy resolution suffers from complexity of hadronic showers due to differences in detector response to hadronic and electromagnetic showers

Frank Simon (<u>frank.simon@kit.edu</u>)

Reconstructing Energy

Using granular information

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Particle Flow Algorithms

Under the hood

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Particle Flow Algorithms

Under the hood

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

Validating PFA Performance

Using test beam data

• Using the CALICE prototype data to validate key aspects of PFA: Shower separation / confusion

good separation h± h0

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

confusion: neutral deficit confusion: neutral excess

Frank Simon (<u>frank.simon@kit.edu</u>)

Validating PFA Performance

Using test beam data

 Using the CALICE prototype data to validate key aspects of PFA: Shower separation / confusion good separation

 Important for confidence in full PFA studies (simulations only!): Validation of simulation

Frank Simon (<u>frank.simon@kit.edu</u>)

41

Data Processing

and Electronics

Extending PFA Performance

Combination with advanced energy reconstruction

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

Extending PFA Performance

Combination with advanced energy reconstruction

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Optimising Detectors for Higgs Factories

Using simulations, validated with test beams

Frank Simon (<u>frank.simon@kit.edu</u>)

Optimising Detectors for Higgs Factories

Using simulations, validated with test beams

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- In combination with many other parameters:
 - radius, resolution of tracker; magnetic field,

Frank Simon (frank.simon@kit.edu)

Data Processing and Electronics

Physics Cross Sections & Signatures

General drivers

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Collision Energy

- ILC: 250 GeV 500 GeV 1+ TeV
- CLIC: 380 GeV 1.5 TeV 3 TeV
 - \Rightarrow Leptons, jets, from a few 10 to many 100 GeV, heavy bosons / complex final states

Physics Drivers

- Physics cross sections low: rates, radiation damage moderate in most regions of the detector
 - Statistics is precious: Excellent reconstruction of all final states
 - Requires high luminosity achievable with very small beams: Beamstrahlung (Luminosity spectrum, backgrounds)

Detector Performance Goals - Tracking

Motivated by key physics signatures

 Momentum resolution Higgs recoil measurement, H -> $\mu\mu$, **BSM** decays with leptons

σ(p_T) / p_T² ~ 2 x 10⁻⁵ / GeV

precise and highly efficient tracking, extending to 100+ GeV

low mass, good resolution: for Si tracker ~ 1-2% X_0 per layer, 7 µm point resolution

single point resolution in vertex detector $\sim 3 \,\mu m$ $< 0.2 X_0$ per layer

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

Inits Jet energy resolution Recoil measurements with hadronic Z decays, s Arbitrary

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

 Jet energy resolution Dit Recoil measurements with hadronic Z decays, s Arbitrary

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Particle ID

Clean identification of e, μ up to highest energies

PID of hadrons to improve tagging, jets,...

Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

 Jet energy resolution Recoil measurements with hadronic Z decays, s Arbitrary

σ(E_{jet}) / E_{jet} ~ 3% - 5% for E_{jet} > 45 GeV

reconstruction of complex multi-jet final states.

• Photons

Resolution not in the focus: ~ 15 - $20\%/\sqrt{E}$ Worth another look ? Coverage to 100s of GeV important

Particle ID

Clean identification of e, μ up to highest energies

- PID of hadrons to improve tagging, jets,...
- Hermetic coverage

Dark matter searches in mono-photon events, ...

N.B.: Achievable limits do not depend strongly on $\sigma(E_v)$

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

The Linear Collider Detector Design - Main Features

Focusing on general aspects

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- A large-volume solenoid 3.5 5 T, enclosing calorimeters and tracking
- Highly granular calorimeter systems, optimised for particle flow reconstruction, best jet energy resolution [Si, Scint + SiPMs, RPCs]
- Low-mass main tracker, for excellent momentum resolution at high energies [Si, TPC + Si]
- Forward calorimeters, for low-angle electron measurements, luminosity [Si, GaAs]
- Vertex detector, lowest possible mass, smallest possible radius [MAPS, thinned hybrid detectors]
- **Triggerless readout** of main detector systems

Linear Collider Conditions

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$

- Enables power pulsing of front-end electronics,
 resulting in dramatically reduced power consumption
 - Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

Linear Collider Conditions

... and the consequences for the detector design

• Linear Colliders operate in bunch trains:

- at CLIC: Δt_b = 0.5 ns; f_{rep} = 50 Hz
- at ILC: $\Delta t_b = 554 \text{ ns}$; $f_{rep} = 5 \text{ Hz}$
- ... and require extreme focusing to achieve high luminosity

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

- \Rightarrow Enables power pulsing of front-end electronics, resulting in dramatically reduced power consumption
 - \Rightarrow Eliminates need for active cooling in many areas of the detectors: Reduced material, increased compactness

- Significant beam-induced backgrounds
 - Constraints on beam pipe geometry, crossing angle and vertex detector radius
 - In-time pile-up of hadronic background: sufficient granularity for topological rejection
 - \Rightarrow At CLIC: small Δt_b also results in out-of-time pile-up: **ns-level timing** in many detector systems

Event Reconstruction at Future Colliders

The goals of PFA

• More practically:

Calorimeter R&D for Higgs Factories - KSETA Workshop, March 2023

Frank Simon (<u>frank.simon@kit.edu</u>)

49

Event Reconstruction at Future Colliders

The goals of PFA

• More practically:

