
  sara.martinelli@kit.edu 

RD event reconstruction and mass sensitivity
Spectral slope model for future improvements
Uncertainty estimation with RICE distribution

KSETA Plenary Workshop 2023, Durbach  - 29th March

PhD student: Sara Martinelli

1



  

EAS initiated by UHECRs
Extensive Air Showers

Ultra-High-Energy Cosmic Rays

- Sources? 

- Acceleration mechanisms? 

- Composition?EAS

 

CR
First interaction with 
the Earth  atmosphere
UHECR E>1018eV 

Source  

CR
Acceleration
 & Propagation to Earth 

Hybrid detection at Auger 

This talk: focus on composition and Radio detection  
of UHECRs at the Pierre Auger Observatory 

Largest ground-based observatory combining several detection techniques

Xmax 

Development of 
particles cascade 



  

The Pierre Auger Observatory 

Fluorescence   
Detector (FD)

-  24 optical 
   telescopes 
-  4 sites
-  atm. monitoring

      Surface Detector (SD)

  Auger Engineering   
  Radio Array (AERA)

High Elevation Auger   
 Telescopes (HEAT)

SD-750, SD-433

-  Radio detectors 
-  Coincidence with SD
-  freq. band: 30-80 MHz 
-  Vertical showers
-  E ~ 1017eV - 1019eV
-  150 stations over 17 km2 

Auger Muon and Infill 
Ground Array (AMIGA)

→  lower SD energy  threshold

→  buried scintillators 

→ more shallow showers

-  Water Cherenkov                 
     Detectors (WCDs) 
-  1600 stations on 1.5km grid

Located in Argentina, 3000km2 
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The Pierre Auger Observatory 

Fluorescence   
Detector (FD)

      Surface Detector (SD)

Located in Argentina, 3000km2 

- Sensitive to the mass of the primary 
particle (Xmax) 

- Operation time limited by day light, 
moon light, clouds …  

- Not sensitive to the mass 

- 100% uptime

Upgrade to increase UHECR 
     mass sensitivity
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Mass sensitivity 

Heitler-Mathews

Upgrade SD to get sensitive to elm particles WCD sensitive to muons
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AugerPrime

Ongoing upgrade of the Pierre Auger Observatory

Surface Scintillator Detector (SSD) 
- 3.84 m2 plastic scintillator panel on top of 1400 tanks

AugerPrime Radio Detector (RD) 
- SALLA located on top of each tank
- Sensitive to radio in 30-80 MHz
- Trigger from WCD
- Mass deployment started and expected to be 
  over by the end of 2023! 
- RD-EA engineering array (10 antennas) already     
  operative since end of 2021

  - background measurments
  - first showers 
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AugerPrime

Ongoing upgrade of the Pierre Auger Observatory

SSD+ WCD 

RD + WCD

SSD loses sensitivity for more inclined air showers
→ vertical air showers (0° ≲ θ ≲ 60°)

Works well with inclined 
air showers (65° ≲ θ ≲ 85°) 

μ

μ e

e

7



  

Radio Detector 
    Complete mass deployment by the end of 2023 ... more air showers data soon! 

- Radio reconstruction algorithm implemented in 

- Expected performance of RD
 
- Expected sensitivity to mass composition

→ Ready!

Full efficiency θ ≳ 70°, lgE > 18.8 Event-by-event p-Fe discrimination ,FOM = 1.6Energy resolution <10%

Work done by Felix Schlueter during his PhD

(official Auger simulation and reconstruction framework)
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Radio Reconstruction

- Digital to analog conversion, upsampling, Hann window etc. 

- Unfolding of the response of the signal-processing chain (LNA, 
impedance matching, filter amplifiers...)

- Unfolding of the antenna response (NEC-2) to 
  get the E-field (EW, NS, N)

E-field reconstruction

- Decomposition of the E-field in the shower plane 
coordinate system

- Estimation of signal-to-noise ratio (SNR)  

- Estimation of the energy fluence
   𝑓 [eV m−2 ], the energy deposit per unit area 

Calibrated signals (see Max Buesken’s talk on last Monday)

     Still room for improvements
(this talk, more in the next slides)
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Radio Reconstruction

- Analytic correction of early-late asymmetry
- Parameterized subtraction of 
  charge-excess emission 

→ 1-dim LDF  

Geomagnetic radiation energy Egeo

Geomagnetic energy fluence
After removing asymmetries 

Radiation energy 

Spatial integral over the energy deposit  

-  LDF fit to estimate the geo radiation
   energy  Egeo (energy emitted in form of waves)

-  Correction on  Egeo

Electromagnetic energy 

compensate for the second-order scaling with the 
geomagnetic angle and air density at Xmax
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Signal Estimation 

Estimation of the energy fluence

 

 100 ns window around the Hilbert envelope peak 

 

Noise fluence subtraction
         [6000-8000]ns

Uncertainties on the energy fluence underestimated
(see backup slides)  

SNR quantification over the 3 polarizations 
At the moment SNR cut is applied to 
determine presence of signal in a station 
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Signal Estimation with Rice 
Goal: get rid of the SNR selection and obtain better estimation of the signals and their uncertainties 

 

Joint density function for amplitude and phase: 

Our measurement can be expressed as:
sum of constant known phasor s and a random phasor sum  

CAVEAT: radio signal has amplitude and phase! 

Based on Chapter 2.9 from J. W. Goodman, Statistical Optics (2015)
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Gaussian distribution

Large signal

Rayleigh distribution
No signal

Marginal density function for amplitude only:
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with I0 modified Bessel function 1st kind of 0-order

Signal Estimation with Rice 



  

Signal Estimation with Rice 

a(f) → our measurement

 

 100 ns window around the Hilbert envelope peak 

FFT in the signal window 
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Signal Estimation with Rice 

       → noise level

80 noise windows 100 ns 
wide along the 8192 ns trace

… …… …

…… …

FFT in the noise windows 
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Signal Estimation with Rice 
Get estimators of s for each frequency bin using the maximum of the Likelihood function

16



  
17

Uncertainty Estimation with Rice 

16%

16%84%

84%

a

a 

s 

Define CDF intervals to estimate uncertainty 

smaller s

larger s
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FFTs computed from whole traces

S  pure simulated signal
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S + N  measurement

N noise (from background
    measurements)

Bias with Rice 

Add to the same simulation 
different noise and study the bias 
obtained for the energy fluence

→ Compare to the bias of the 
actual standard estimation

(work in progress)

Offline: storing f, s, sigma, uncertainties in the 
ParameterStorage to have the full likelihood
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Frequency spectrum 

A further improvement would be to use a Signal model describing the shape of the frequency 

spectrum and fit all points maximizing the likelihood 



  

Frequency spectrum 

Frequency slope 
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Frequency slope 

Lateral distance function 
Parameterization as a function of the geometrical 
distance between core and shower maximum 

Can be used to constrain geometry
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Conclusions
- Mass deployment of RD completed by the end of 2023

- Radio reconstruction algorithm available in Offline

- Ongoing improvements about the signal estimation using the Rice distribution willl be 
soon implemented in Offline  

- Parameterization of the spectral content of radio emission in 30-80 MHz available for 
future improvements (constrain geometry)



  

Backup 



  

After removing asymmetries 

 Early-late asymmetry Charge-excess asymmetry   



  

Energy fluence Uncertainty model 

smearing the signal implemented in the detector simulation (antennas variation)

calculated in the 
noise window

sampling 1 ns

uncertainty due to noise after subtracting it
amplitudes are superposition of signal and white noise Gaussian distributed  
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5% uncertainty on the amplitudes (probably overestimated vs data)

noise window

signal window

(introduced for AERA long time ago)
fluence determined in the noise window
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The relative uncertainties do not 
match the resolution → 
uncertainties underestimated

Resolution: how good we reconstruct 
the energy, std of Eem /EemMC in 
zenith bins

Goodness of the LDF fits: 
too small p-values→ uncertainties
probably underestimated   



  

S(t) = Aδ(t − t 0 ) 
N noise (random generated)

 

Rice distribution: a trivial example

FFTs computed from whole traces
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S mean value 
of the signal 
trace

of the noise 
trace



  

Rice distribution: a less trivial example (a)

S mean value of the signal trace

S simulated signal (geo component) 
N noise (random generated)
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Rice distribution: a less trivial example (b)

S mean value of the signal trace

 
Slightly steeper frequency spectrum

S simulated signal (geo component) 
N noise (random generated)
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Looks good!

Toy MC  
Binned MC signal &ML signal estimator 



  

Binned MC signal &ML signal estimator 

Here the 
peak is a 
problem…. 

Toy MC  



  

Here the other small 
distribution is a 
problem...

Binned MC signal &ML signal estimator 

Toy MC  



  

Bias normalized to the mean value of MC bin



  

Example of estimators for a given trace, s from pure simulation without noise

Signal Estimation with Rice 
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Frequency slopes of the Geo component from a simulation 
having

Flattening of the spectrum → shorter pulses and coherence 

Single-event lateral distribution

Spectral fits at different r



  

Slope lateral distribution: fit vs parameterized values

Shower having Shower having

Spectral fit 
Full parameterization

Spectral fit 
Full parameterization
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Parameterization: Geomagnetic frequency slope
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  [Km]
38

Xmax dependence
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