

CONSTRAINTS ON SCALAR PERTURBATIONS FROM PTA

V.DANDOY, V.DOMCKE, F.ROMPINEVE

Based on: 2302.07901

Durbach 2023 KSETA Workshop

MOTIVATION •••

All the GW events observed so far (LIGO-VIRGO) came from astrophysical objects

WHAT ARE THE SOURCES OF GW?

- Black hole + black hole merging
- Black hole + neutron star merging
- neutron star + neutron star merging

But: Early universe phenomena could also trigger GW

- Phase transitions in the early universe
- Domain walls (i.e. axion)
- Large perturbations in the early universe

WHAT ARE THE SOURCES OF GW?

So far never observed....

But: early universe phenomena could also trigger GW

universe

WHAT ARE THE SOURCES OF GW?

- So far never observed....
 - Phase transitions in the early
- Domain walls (i.e. axion)
 - Large perturbations in the early universe

this talk

 Metric perturbations are decomposed into scalar and tensor perturbations

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + ((1+2\Phi)\delta_{ij} +$$

SCALAR INDUCED GW

 $h_{ij}) dx^i dx^j$

Negligible at linear order

 Metric perturbations are decomposed into scalar and tensor perturbations

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + ((1+2\Phi)\delta_{ij} +$$

Sourced by the scalar perturbations at non-linear order

 Gravitational wave spectrum is a function of the curvature power spectrum

KSETA Workshop

SCALAR INDUCED GW

 $h_{ij}) dx^i dx^j$

Negligible at linear order

$$F_W(k) = F(P_\zeta(k))$$

$$\Omega_{GW}(k) = F(P_{\zeta}(k))$$

We know the curvature spectrum at large scales from CMB:

$$P_{\zeta} \approx \mathcal{O}(10^{-9})$$
 at scales $k \approx \mathcal{O}(1 \mathrm{Mpc}^{-1})$
[1807.06211]
To small to produce any

seizable GW...

SCALAR INDUCED GW

$$\Omega_{GW}(k) = F(P_{\zeta}(k))$$

We know the curvature spectrum at large scales from CMB:

 $P_{\zeta} \approx \mathcal{O}(10^{-9})$ at scales $k \approx \mathcal{O}(1 \mathrm{Mpc}^{-1})$ [1807.06211]

Could have big enough perturbations to produce GW

To small to produce any seizable GW...

SCALAR INDUCED GW

Almost no constraints on the curvature power spectrum at small scales !

KSETA Workshop

SCALAR INDUCED GW

ANY SIGN OF THE SIGW ?

KSETA Workshop

Pulsars send light pulses with stable period

KSETA Workshop

POTENTIAL GW SIGNAL IN PTA

Pulsars send light pulses with stable period

1

 $T + \delta t_{GW}$

POTENTIAL GW SIGNAL IN PTA

If a GW goes in between the Earth and the pulsar, the time of arrival of the next pulse is delayed

Pulsars send light pulses with stable period

T

 $T + \delta t_{GW}$

POTENTIAL GW SIGNAL IN PTA

Signal observed in NANOGrav and IPTA

WHAT IS THE ORIGIN OF THOSE GW?

 Coallescence of super massive black holes

Use bayesian search on the data to find what curvature power spectrum could explain the signal

POTENTIAL GW SIGNAL IN PTA

Works well to explain the signal

PARAMETRIZATION OF THE POWER SPECTRUM

POTENTIAL GW **SIGNAL IN PTA**

PARAMETRIZATION OF THE POWER SPECTRUM

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{4}

Aps

Parametrize the power spectrum at small scales with a log-normal shape

$$P_{\zeta}(k) = \frac{A_{\zeta}}{\sqrt{2\pi\Delta}} \operatorname{Exp}\left(-\frac{\log^2(k/k_*)}{2\Delta^2}\right)$$

Use data of IPTA and NANOgrav to find what values could explain the signal

POTENTIAL GW SIGNAL IN PTA

PRIMORDIAL BLACK HOLES FROM CURVATURE PERTURBATIONS

KSETA Workshop

PBH FORMATION FROM LARGE CURVATURE FLUCTUATIONS

Depends on the curvature

• What is the population
of PBH today?

$$P_{r_m}(\delta_m) = \frac{1}{\sqrt{2\pi\sigma_{r_m}^2}} \exp\left(-\frac{\delta_m^2}{2\sigma_{r_m}^2}\right)$$

$$\sigma_{r_m}^2 = \frac{16}{81} \int_0^\infty \frac{\mathrm{d}k'}{k'} (k'r_m)^4 T^2(k', r_m) W^2(k'; r_m) P_0^2(k'; r_m) P$$

KSETA Workshop

PBH FORMATION FROM LARGE CURVATURE FLUCTUATIONS

e curvature

$$f_{\rm PBH} = F_f(P_{\zeta})$$
$$\langle M_{\rm PBH} \rangle = F_M(P_{\zeta})$$

One could translate them into constraints on the amplitude A_{ζ}

How do those upper limits
show up in our bayesian search?

PBH FORMATION FROM LARGE CURVATURE FLUCTUATIONS

$$f_{\rm PBH} = F_f(P_{\zeta})$$
$$\langle M_{\rm PBH} \rangle = F_M(P_{\zeta})$$

One could translate them into constraints on the amplitude A_{ζ}

How do those upper limits show up in our bayesian search?

= 1

PBH FORMATION FROM LARGE CURVATURE FLUCTUATIONS

$$f_{\rm PBH} = F_f(P_{\zeta})$$
$$\langle M_{\rm PBH} \rangle = F_M(P_{\zeta})$$

One could translate them into constraints on the amplitude A_{ζ}

The IPTA region able to • explain the signal seems to produce to many PBH!!

= 1

PBH FORMATION FROM LARGE CURVATURE FLUCTUATIONS

KSETA Workshop

- Large amplitudes of the curvature power spectrum produce GW able to explain the signal observed in PTA
- Such large amplitudes would produce primordial black holes as well
 - We have shown that the parameter space able to explain the signal would potentially produce too many PBHs compared to observational data
- The SMBH model is favored to explain to signal
 and we therefore derived upper limits on the amplitude of the curvature spectrum

CONCLUSION

CRITICAL THRESHOLD

BACKUP

CONSTRAINTS PBH

BACKUP

HOW TO PROBE SMALL SCALE POWER SPECTRUM ?

Parametrize the power spectrum with a log-normal shape

$$P_{\zeta}(k) = \frac{A_{\rm PS}}{\sqrt{2\pi\Delta}} \operatorname{Exp}\left(-\frac{\log^2(k/k_*)}{2\Delta^2}\right)$$

Perform bayesian search to determine the evidence regions

Dark Matter 2022

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{4}

Aps

30th November 2022