

Triple-Differential Z+Jet Production at 13 TeV

10th KSETA Plenary Workshop 2023

Robin Hofsaess, Maximilian Horzela, Günter Quast, Klaus Rabbertz, Cedric Verstege | 29. March 2023

www.kit.edu

Goal Constraints on gluon (and other) parton distribution functions (PDFs) • Input for α_s fits initial partor • $Z \rightarrow \mu^+ \mu^-$ Good number of signal events Low number of background events Precise muon reconstruction and identification with CMS Analysis Strategy Selections Unfolding Uncertainties Results Conclusions

29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV 2/21

Why Z+Jets?

oooo

3/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

What is a Jet?

4/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Why plus Jet?

5/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Why Triple-Differential?

Analysis Strategy

0000

- Transverse momentum of di-muon system
 - *p*^Z_T
 - Scale of the hard interaction
- Boost of center-of-mass system

•
$$y_b = \frac{1}{2}|y^Z + y^{\text{Jet1}}|$$

- Parton momentum fractions of the protons
- Rapidity separation

Uncertainties

$$\mathbf{y}^* = \frac{1}{2} |\mathbf{y}^Z - \mathbf{y}^{\text{Jet1}}|$$

Scattering angle in center-of-mass system

Results

6/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Selections

Unfolding

Institute of Experimental Particle Physics

Conclusions

Event Selections and Corrections (Muons)

Analysis Strategy

- Events passing single muon trigger
 - p_T^{μ} above trigger threshold
 - Corrected for trigger efficiency
- Muon selection
 - \bullet Within muon system coverage $|\eta|<2.4$
 - Tight identification and isolation criteria
 - Cluster final state radiation (dressed muons)
- Z-boson reconstruction

Uncertainties

• $\mu^+\mu^-$ pair compatible with Z-boson mass

Results

7/21	29.03.2023	Maximilian Horzela: 3D Z+Jet Production at 13 TeV	
------	------------	---	--

Selections

•00

Unfolding

Institute of Experimental Particle Physics

Conclusions

Event Selections and Corrections (Jets)

Karlsruhe Institute of Technology

Datasets and MC

- Proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ recorded from 2016 to 2018
- Total integrated luminosity 138 fb⁻¹
- Signal MC:
 - $Z(
 ightarrow \ell^+\ell^-) + 0, 1, 2\,{
 m jets}$ MadGraph+Pythia8 aMC@NLO FXFX
- Background MC:
 - $t ar{t}
 ightarrow 2b 2\ell 2
 u$ Powheg+Pythia8 NLO
 - Single top quark t-channel and tW

 ${\sf Powheg+MadSpin+Pythia8\ NLO}$

Di-Boson WW, WZ, ZZ Pythia8 LO

Analysis Strategy	Selections ○○●	Unfolding 0000000	Uncertainties o	Results	Conclusions o

9/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Basics

- Unfolding for detector effects of observation s to true spectrum t
 - $\hfill Detector Resolution <math display="inline">\rightarrow Migration$ between generator and reconstruction bins
 - Detector Efficiency →Less events on reconstruction level than generator level

We have:
$$s(\vec{y}) = \int_X D(\vec{y}, \vec{x}) t(\vec{x}) d\vec{x}$$

We want: $t(\vec{x}) = \int_Y D'^{-1}(\vec{x}, \vec{y}) s(\vec{y}) d\vec{y}$

•

Analysis Strategy	Selections	Unfolding ●○○○○○○	Uncertainties o	Results	Conclusions o
10/21 29.03.2023	Maximilian Horzela: 3D 2	Z+Jet Production at 13 T	ГeV	Institute of Experime	ental Particle Physics

Unfolding Basics

- Unfolding for detector effects of observation s to true spectrum t
 - $\hfill \ensuremath{\,\,}$ Detector Resolution $\rightarrow \ensuremath{\mathsf{Migration}}$ between generator and reconstruction bins
 - Detector Efficiency →Less events on reconstruction level than generator level
- \blacksquare Variations below finite resolution \leftrightarrow III-posed problem
- Usually *s* and *t* discretized in histograms
 - \rightarrow "invert" Response Matrix R (i.e. TUnfold [4])
 - $\hfill Estimate Response Matrix from MC \rightarrow$ Systematic and statistical uncertainties
 - If matrix ill-conditioned \rightarrow Regularize "unphysical" oscillations

We have:
$$s(\vec{y}) = \int_X D(\vec{y}, \vec{x}) t(\vec{x}) d\vec{x}$$

We want: $t(\vec{x}) = \int_Y D'^{-1}(\vec{x}, \vec{y}) s(\vec{y}) d\vec{y}$

$$s^i = \mathbf{R}^i_j t_j o t_j = \mathbf{R}^{-1}{}^i_j s^i$$

with
$$\mathbf{R}_{j}^{i} = rac{\int_{Y_{i}} \int_{X^{j}} D(\vec{y}, \vec{x}) t(\vec{x}) \mathrm{d}\vec{x} \mathrm{d}\vec{y}}{\int_{X^{j}} t(\vec{x}) \mathrm{d}\vec{x}}$$

Analysis Strategy	Selections	Unfolding ●○○○○○○	Uncertainties \circ	Results 000	$\mathop{Conclusions}_{\scriptscriptstyle O}$

TUnfold

- $\hfill \ensuremath{\bullet}$ Algorithm for estimating truth t from measured observables s
- \bullet Assumes Gaussian distribution of s with average $\tilde{s}=R\tilde{t}$ \rightarrow least-square method
- Maximize likelihood

$$\mathcal{L} = \left(\mathbf{s} - \mathbf{R} \mathbf{t}
ight)^{\mathcal{T}} \mathbf{V}_{\mathbf{ss}} \left(\mathbf{s} - \mathbf{R} \mathbf{t}
ight) + \mathcal{L}_{\mathsf{reg}} + \mathcal{L}_{\mathsf{norm}}$$

with covariance matrix \mathbf{V}_{ss}

- \rightarrow General analytical solution $t_0(s,R,V_{ss})$ and covariance $V_{tt}(\frac{\partial t_0}{\partial s},R,V_{ss})\rightarrow$ plug in and do the linear algebra
- $\rightarrow\,$ Similar for contributions to V_{tt} due to statistical uncertainties on R
- Avoid regularization $\mathcal{L}_{\mathsf{reg}}$, when **R** well-conditioned ($\delta \mathbf{s} \approx \mathsf{resolution}$)
- \blacksquare Avoid normalization $\mathcal{L}_{norm},$ when Gaussian approximation holds \rightarrow true in this analysis

Analysis Strategy	Selections	Unfolding o●ooooo	\bigcup_{o}	Results 000	$\mathop{Conclusions}_{\scriptscriptstyle O}$
11/21 29.03.2023	Maximilian Horzela: 3D Z	Z+Jet Production at 13 T	ēV	Institute of Experime	ental Particle Physics

Bin Unraveling

M. Schnepf 2022 [5]

Response Matrix

 Migrations from truth level to observation level due to detector effects

 $\mathcal{P}(\text{event in reco bin } i | \text{event in gen bin } j)$

- $\rightarrow\,$ Fill MC events passing selections on reco- and gen-level for each analysis bin and normalize
- \bullet Small condition number, well-conditioned \rightarrow Regularization not necessary
- Found to be similar for all data taking years

Analysis Strategy	Selections	Unfolding ○○○●○○○	Uncertainties o	Results 000	Conclusions o

13/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Acceptance & Fake rate

- Some events reconstructed in underflow or overflow of Response Matrix
- Acceptance
 - Events passing cuts on generator level but not on reconstruction level
 - Including detector & reconstruction inefficiencies
 - \rightarrow Treat as inefficiencies
- Fake rate
 - Events passing cuts on reconstruction level but not on generator level
 - \rightarrow Subtract as background
- Accounted for during unfolding

trategy Selections Unfolding Uncertainties Results Conclus 000 000000 0 000 000 0	trategy	Selections	Unfolding 0000€00	Uncertainties o	Results	Conclusi o
--	---------	------------	----------------------	--------------------	---------	---------------

Unfolding Closure

- Consistency check
- Unfold simulated distribution with response using the same MC events
- Perfect agreement between unfolded MC and generator level
- $\rightarrow~$ Unfolding works as expected

Analysis Strategy	Selections	Unfolding ○○○○○●○	Uncertainties o	Results	Conclusions o

15/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Model Dependence of Unfolding

- Choice of MC to fill Response Matrix might bias the results
- Estimate effect of alternative MC simulation
- Compare unfolded distribution using nominal & alternative response matrices
- Agreement within statistical uncertainties
- $\rightarrow~$ No significant model dependence

Systematic Uncertainties

- Various systematic effects impacting unfolded event yields, e.g.
 - Jet energy calibration (JEC) and resolution correction on MC (JER)
 - Measured Luminosity
 - Limited number of events for creation of Response Matrix for Unfolding
 - Estimated Background contributions
 - ...
- Subject to systematical uncertainties
- $\rightarrow\,$ Adapt response matrix, acceptance, and fake rate for each systematical variation
- $\rightarrow\,$ New unfolding for each uncertainty

Uncertainties	Results	Conclusions
•	000	0

Unfolded Cross-Sections 2018: Central Region

18/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolded Cross-sections 2018: High Boost

L

19/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Comparison to NNLO Predictions and QCD Analysis

- TBD: Compare and fit measured cross-sections to state-of-the-art theory predictions for Z+Jet → NNLO QCD ⊗ NLO-EWK ⊗ nonperturbative (NP) corrections
- NP corrections $\frac{ME+PS+Had+MPI}{ME+PS}$
 - dimish towards higher $p_{\rm T}^{\rm Z}$
 - change to slightly lower values from LO to NLO perturbative QCD

Results

000

20/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Institute of Experimental Particle Physics

Conclusions

Comparison to NNLO Predictions and QCD Analysis

- TBD: Compare and fit measured cross-sections to state-of-the-art theory predictions for Z+Jet → NNLO QCD ⊗ NLO-EWK ⊗ nonperturbative (NP) corrections
- NP corrections $\frac{ME+PS+Had+MPI}{ME+PS}$
 - dimish towards higher $p_{\rm T}^{\rm Z}$
 - change to slightly lower values from LO to NLO perturbative QCD

Results

000

depend on the jet type

29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

20/21

Institute of Experimental Particle Physics

Conclusions

Outlook

- First Z+Jet triple-differential cross-section measurement at 13 TeV with full Run II CMS data in progress
 - Combination of all data-taking periods from 2016 to 2018 into single measurement
 - Comparison to NNLO fixed-order predictions including electroweak and non-perturbative corrections
 - $\hfill \mathsf{PDF}$ and $\alpha_{\mathcal{S}}$ fits
- $\rightarrow\,$ Aiming for publication early 2024

Analysis Strategy	Selections	Unfolding	Uncertainties o	Results 000	Conclusions ●
-------------------	------------	-----------	--------------------	----------------	------------------

Selections IS-Partons Data/MC Response Matrices Closure One of the selection of the selecti

22/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Detailed Event Selection

Selection	Value	At least one Jet wit	n the following criteria
Trigger	2016: HLT_lsoMu24 or HLT_TkMu24 2017: HLT_lsoMu27 2018: HLT_lsoMu24	Selection Jet ID	Value Tight + Lepveto
Muon ID Muon PF ISO Muon p_T Muon $ \eta $	Tight Tight > 29 GeV < 2.4	PUJetID $\Delta R(\mu_Z, \text{Jet})$ Jet p_T Jet $ y $ let Veto Maps	Tight > 0.4 > 20 GeV < 2.4
Z mass Z p _T	$m_Z \pm 20 \text{ GeV} \ > 25 \text{ GeV}$		·

One $Z \rightarrow \mu\mu$ candidate with the following criteria

Karlsruhe Institute of Technology

Corrections

Selections

0 00

(Correction/S	SF	2016p	reVFP	2016postVFF	2017	2018	3	
1	Muon RECC) SFs	~	/	1	1	1		
1	Muon ISO S	Fs	~	/	1	1	1		
1	Muon ID SF	s	~	/	1	1	1		
1	Muon Trigge	er SFs	~	/	1	1	1		
1	Muon Roche	ester		Data (k	ScaleDT) + M	IC (kSprea	adMC)		
1	Muon Dress	ing		Data	$+$ MC with Δ	$R(\mu, \gamma) <$	0.1		
1	Muon L1Pre	efiring	~	/	1	1	1		
E	ECAL L1Pre	efiring	V	/	1	1	not nee	eded	
1	METFilters		Dat	a + M0	C (All recomme	ended for	each yea	r)	
F	PuJetID SFs	5	~	/	1	1	1		
-	JEC		V	7	V7	V5	V5		
-	JER (hybrid)	V	3	V3	V2	V2		
IS-Partons o	Data/MC I	Response	Matrices	Closure 0000	Unfolding Model	Dependence	Results	$_{\circ}^{NP-Corrections}$	Refe

24/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Dependence of Parton Luminosities on Phase-Space

Data/MC 2018

26/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Data/MC 2017

27/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Data/MC 2016postVFP

28/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Data/MC 2016preVFP

29/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Response Matrices 2018

NLO

Maximilian Horzela: 3D Z+Jet Production at 13 TeV 30/21 29.03.2023

Response Matrices 2017

NLO

Maximilian Horzela: 3D Z+Jet Production at 13 TeV **31/21** 29.03.2023

Response Matrices 2016postVFP

NLO

Maximilian Horzela: 3D Z+Jet Production at 13 TeV 32/21 29.03.2023

Response Matrices 2016preVFP

NLO

Maximilian Horzela: 3D Z+Jet Production at 13 TeV **33/21** 29.03.2023

Unfolding Closure 2018

34/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Closure 2017

35/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Closure 2016postVFP

36/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Closure 2016preVFP

37/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Model Dependence 2018

38/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Model Dependence 2017

39/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Model Dependence 2016postVFP

40/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolding Model Dependence 2016preVFP

41/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

Unfolded Cross-Sections 2018 10

Unfolded Cross-Sections 2017

45/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

MPI and Hadronization effects

46/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

MPI and Hadronization effects

46/21 29.03.2023 Maximilian Horzela: 3D Z+Jet Production at 13 TeV

References I

- David Barney. "CMS Detector Slice". CMS Collection. 2016. URL: https://cds.cern.ch/record/2120661.
- [2] Thomas Berger. "Jet energy calibration and triple differential inclusive cross section measurements with Z (→µµ) + jet events at 13 TeV recorded by the CMS detector". PhD thesis. Karlsruher Institut für Technologie (KIT), 2019. 139 pp. DOI: 10.5445/IR/1000104286.
- [3] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "The anti-kt jet clustering algorithm". Journal of High Energy Physics 2008.04 (Apr. 2008), p. 063.
 DOI: 10.1088/1126-6708/2008/04/063. URL: https://dx.doi.org/10.1088/1126-6708/2008/04/063.

Selections IS-Partons Data/MC Response Matrices Closure 0000 Cooperations 0000 References 00000 References 0000 References 00000 References 0000 References 00

References II

- [4] Stefan Schmitt. "TUnfold: an algorithm for correcting migration effects in high energy physics". JINST 7 (2012), T10003. DOI: 10.1088/1748-0221/7/10/T10003. arXiv: 1205.6201 [physics.data-an].
- [5] Matthias Schnepf. "Dynamic Provision of Heterogeneous Computing Resources for Computation- and Data-intensive Particle Physics Analyses". PhD thesis. Karlsruher Institut für Technologie (KIT), 2022. 129 pp.

DOI: 10.5445/IR/1000143165.

Selections IS-Partons Data/MC Response Matrices Unfolding Model Dependence Results NP-Corrections References Closure