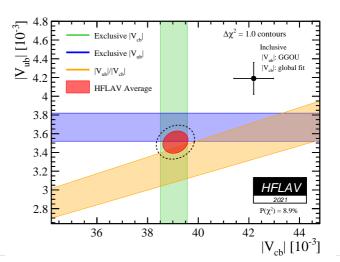
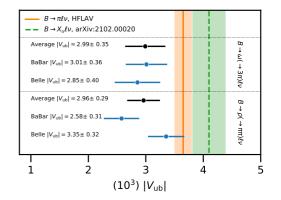


$\mathsf{B} ightarrow ho \ell u_\ell$ with Hadronic Full Event Interpretation Tag at Belle II


KSETA Plenary Workshop 2023

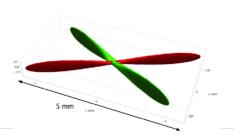
Moritz Bauer, Torben Ferber, Pablo Goldenzweig | 29. March 2023

B-Physics and Semileptonic Decays

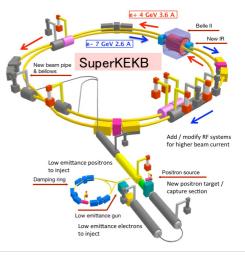

- Many decay processes for B mesons → Many opportunities for SM tests and searches
- CKM Matrix $|V_{ub}|$ and $|V_{cb}|$: Tension ($\approx 3.3\sigma$) between determination from
 - inclusive (all $B \to X \ell \bar{\nu}_{\ell}$) and
 - exclusive (one b \rightarrow x process)
- Differences both in theory and experiment

${f B} ightarrow ho \ell u_\ell$ decays

- CKM matrix element $|V_{\rm ub}|$ from ${\rm B}\to \rho\ell\nu_\ell$ shows tension with
 - $|V_{ub}|$ from B $ightarrow \pi \ell
 u_{\ell}$
 - $|V_{ub}|$ from B ightarrow X $_{u}\ell
 u_{\ell}$ (inclusive)
- Slight tension in last two published measurements of branching fraction of
 - $\dots B^+ \to \rho^0 \ell^+ \nu_\ell$:
 - \blacksquare Belle (2013): 1.83 \pm 0.10 \pm 0.10
 - BaBar (2011): 0.94 \pm 0.08 \pm 0.14
 - $\dots B^0 \to \rho^- \ell^+ \nu_\ell$:
 - Belle (2013): 3.22 ± 0.27 ± 0.24
 - BaBar (2011): 1.75 ± 0.15 ± 0.27

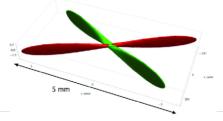


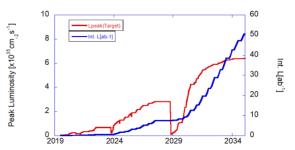
Determination by Bernlochner, Prim, and Robinson


World record luminosity: SuperKEKB accelerator

- Asymmetric e^+e^- collider with $\sqrt{s} \approx 10.6 \, \text{GeV}$ ($\Upsilon(4S)$ resonance)
- Peak luminosity (June 22): 3.1 × 10³⁴ cm⁻² s⁻¹ (+50% vs. KEKB)
 - In part thanks to nano-beam scheme.

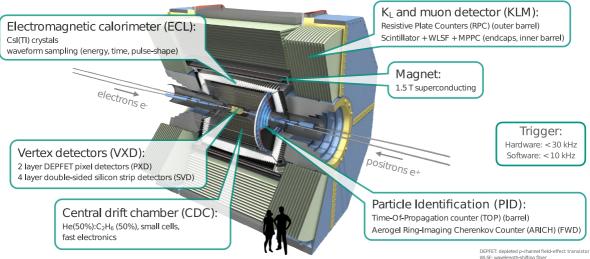
5


29.03.2023



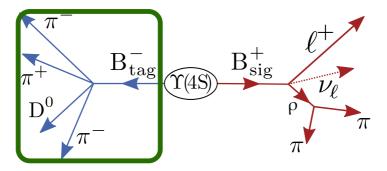
World record luminosity: SuperKEKB accelerator

- Asymmetric e^+e^- collider with $\sqrt{s} \approx 10.6 \, \text{GeV}$ ($\Upsilon(4S)$ resonance)
- Peak luminosity (June 22): 3.1 \times 10 $^{34}\,cm^{-2}\,s^{-1}$ (+50% vs. KEKB)
 - In part thanks to nano-beam scheme.
- Current recorded dataset: \approx 428 fb⁻¹
 - pprox 1/2 Belle, pprox BaBar
 - Aiming for 50x of Belle's dataset (50 ab⁻¹)



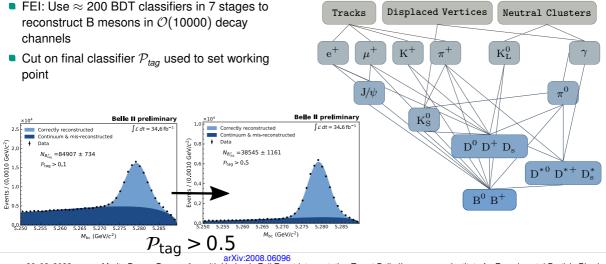
Institute for Experimental Particle Physics

The Belle II detector


MPPC: multi-pixel photon counter

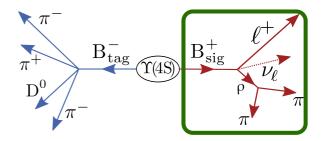
Institute for Experimental Particle Physics

Experimental Techniques



- e⁻e⁺ collisions "clean" compared to pp and initial state well known.
 - $\rightarrow\,$ knowing the second B gives you complete knowledge on kinematics
- Tagging: Reconstruct 2nd B (B_{tag}) e.g. with Full Event Interpretation (FEI). Keck, T. et al. Comput Softw Big Sci 3, 6

Experimental Techniques: FEI


8 29.03.2023 Moritz Bauer: B $\rightarrow \rho \ell \nu_{\ell}$ with Hadronic Full Event Interpretation Tag at Belle II

Institute for Experimental Particle Physics

Event Reconstruction and Selection

- Use track & particle ID selections to determine track quality & particle species
- Create a p candidate from two pion-like tracks/clusters
- Combine B_{sig} with B_{tag} from FEI to ↑(4S) candidate
- Enhance purity using remaining tracks & clusters

MVA Event Selection

Suppress $e^-e^+ \rightarrow q\bar{q}$ with BDT:

- Sphericity & thrust variables
- Only use most-discriminating variables as determined by re-training without each variable
- Cut at 0.8 rejects 95% of q q
 background and retains 93% of signal

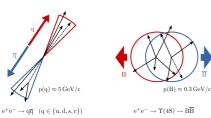
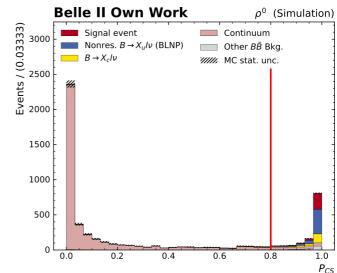
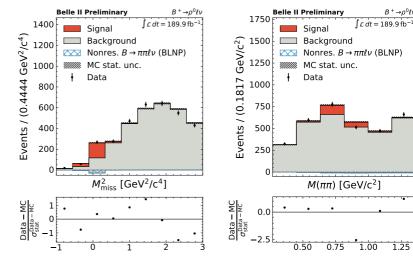



Illustration by M. Röhrken

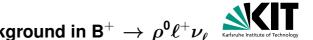


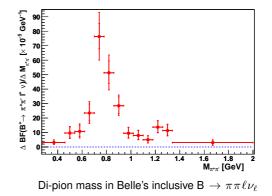
 $B^+ \rightarrow \rho^0 \ell \nu$

1.25

ICHEP 2022: Preliminary Result (arXiv:2211.15270)

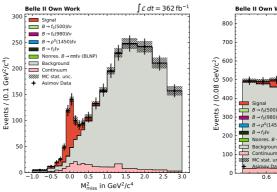
- Signal extraction in di-pion mass $M_{\pi\pi}$ and missing mass $M_{
 m miss}^2 = (\mathbf{p}_{
 m CMS} - \mathbf{p}_{
 m tag} - \mathbf{p}_{
 ho} - \mathbf{p}_{\ell})^2$
 - Two-dimensional binned template fit with three components:
 - $B \rightarrow \rho \ell \nu_{\ell}$ signal
 - Non-resonant B $\rightarrow \pi \pi \ell \nu_{\ell}$
 - Other backgrounds (mostly) $B \rightarrow X_c \ell \nu_\ell$
 - Large post-fit uncertainties from negative yield in non-resonant model

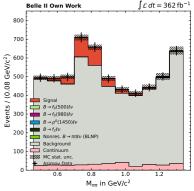



ICHEP 2022: Preliminary Result (arXiv:2211.15270)

- Signal extraction in di-pion mass $M_{\pi\pi}$ and missing mass $M_{\text{miss}}^2 = (\mathbf{p}_{\text{CMS}} - \mathbf{p}_{\text{tag}} - \mathbf{p}_{\rho} - \mathbf{p}_{\ell})^2$
 - Two-dimensional binned template fit with three components:
 - $\mathbf{B} \to \rho \ell \nu_{\ell}$ signal
 - Non-resonant B $\rightarrow \pi \pi \ell \nu_{\ell}$
 - Other backgrounds (mostly $B \rightarrow X_c \ell \nu_\ell$)
 - Large post-fit uncertainties from negative yield in non-resonant model

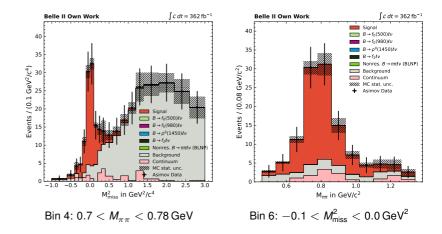
Source	% of	% of
-	${\cal B}(B^0 o ho^-\ell^+ u_\ell)$	$\mathcal{B}(B^+ \to ho^0 \ell^+ u_\ell)$
<i>f</i> ₊₀	1.2	1.2
FEI calibration	2.7	6.1
N _{BB}	1.5	1.5
Reco. efficiency ϵ	0.5	0.3
Tracking	0.6	0.9
Lepton ID	0.7	0.5
Hadron ID	0.3	0.6
π^0 efficiency	4.4	_
$B \rightarrow f_2/f_0 \ell \nu_\ell \text{ BF}$	_	12.1
$B \to X_{\mu} \ell \nu_{\ell}$ BFs	2.8	4.8
$B ightarrow X_c \ell u_\ell$ BFs	0.5	0.5
$B ightarrow ho \ell^+ u_\ell$ form factor	2.7	0.7
$B ightarrow \pi \pi \ell u_\ell$ model	27.3	14.4
Total	28.2	20.5


- Complex backgrounds from other decays to two pions
 - $f_0(500), f_0(980), f_2(1270), \rho^0(1450)$
 - Maybe non-resonant B $\rightarrow \pi \pi \ell \nu_{\ell}$
- These are not measured → extract in-situ using di-pion mass
- Constrain sum of all backgrounds and signal using input from Belle's 2021 inclusive measurement (Belle 2021) of B $\rightarrow \pi \pi \ell \nu_{\ell}$ Phys. Rev. D 103, 112001 (2021)



Fit Setup (Asimov Data)

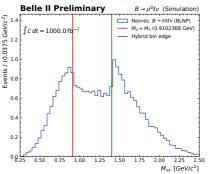
- Two-dimensional fit with 8 templates:
 - 6 for resonant and non-resonant $B \rightarrow X_u \ell \nu_\ell$
 - 1 for all $B\overline{B}$ backgrounds (dominated by $B \rightarrow X_c \ell \nu_\ell$)
 - 1 for qq̄ backgrounds (constrained from non-Υ(4S) data)
- Larger bins at edges of M²_{miss}
- $M_{\pi\pi}$ bins matching Belle 2021

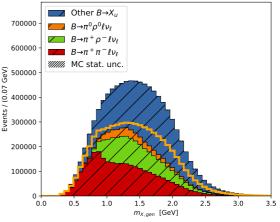


Fit Setup with Constraint (Asimov Data)

- Contributions from resonant, di-pion X_u backgrounds expected to be tiny but are unmeasured
- ⇒ Float individual yields Y_i and constrain with Belle 2021 by adding term to $-ln\mathcal{L}$:

$$\left(\frac{\mathcal{B}_{\text{Belle 2021}} - \sum_{i}^{6} \epsilon_{i} \times \mathbf{Y}_{i}}{\sigma_{\mathcal{B}_{\text{Belle 2021}}}}\right)^{2}$$


e_i from simulation but allowed to vary within Gaussian prior



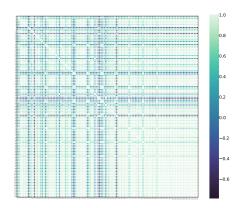
Systematic Uncertainties: Non-resonant shape

- ICHEP2022: Uncertainty from fit with two model variants
- Now: Reweight distribution to halve the effect and allow fit to modify the shape

Belle II Simulation

Non-resonant B $\rightarrow \pi \pi \ell \nu_{\ell}$ shape from PYTHIA

Systematic Uncertainties in the Fit

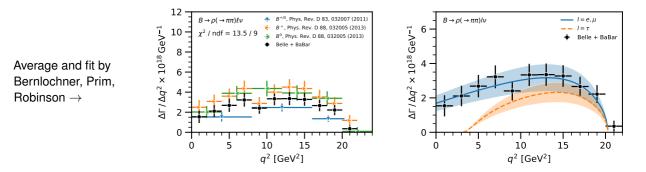


Main sources:

- MC sample statistics
- Analysis methods: Particle ID and FEI
- B ightarrow X $\ell
 u_{\ell}$ branching fractions and form factors
- Non-resonant B $\rightarrow \pi \pi \ell \nu_{\ell}$ decay model

Procedure:

- For each source, determine covariance matrix in bins of fit
- In each template, sum covariance matrices assuming no correlation between sources
- $\rightarrow N_{bins} \times N_{template}$ nuisance parameters


Example: Correlation matrix for the background template

Up Next

$|V_{ub}|$ from B $ightarrow ho \ell u_{\ell}$

- BF in bins of momentum transfer + theory input gives access to $|V_{ub}|$
- $\hfill At least three bins needed <math display="inline">\rightarrow$ challenging with Belle II's statistics

