

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Sensitivity analysis of the total reinjection geothermal plant in Castelnuovo

Daniele Fiaschi¹, Giampaolo Manfrida¹, Pouriya Niknam¹ and <u>Lorenzo Talluri¹</u>

> ¹Department of Industrial Engineering (DIEF) University of Florence Florence, Italy <u>lorenzo.talluri@unifi.it</u>

EGW 2019

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Table of contents

- Resource conditions
- Power plant schematic
- Thermodynamic model
 - Results
- Sensitivity Analysis
- Exergo-economic model
 - Results
- Dynamic Simulation
 - Response time of the reinjection well
 - Flow-pressure variations in the reinjection well
- Conclusions

EGW 2019

th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Resource conditions

- The Montecastelli Pisano area (in which the "Castelnuovo" permit falls) is characterized by values between 100 and 300 mW/m² on average.
- Saturated vapour at a pressure within the 60-80 bar range, 280°C temperature at about 3500 m depth.
- At well head, the expected resource conditions are 10.3 bars pressure and 180 °C temperature.
- The NCG mass content is estimated at about 8%, of which about 7.8% is CO₂ and 0.2% H₂S.

Heat flow distribution expressed in mW/m^2 (Bellani et al., 2004)

Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., 2004. Heat flow, deep temperatures and extensional structures in the Larderello geothermal field (Italy): constraints on geothermal fluid flow. J. Volcanol. Geotherm. Res. 132, 15–29.

EGW 2019

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Power plant schematic

- The well layout consists of 2 production and 1 reinjection wells.
- The ORC is a recuperative power cycle using R1233zd(E) as working fluid.
- A three-stage compressor with intercoolers to reduce the power consumption is considered.

EGW 2019

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Thermodynamic models $\sum \dot{m}_i = \sum \dot{m}_e$

- $\sum \dot{Q} + \sum \dot{m}_i h_i = \sum \dot{W} + \sum \dot{m}_e h_e$
- All the processes for system and subsystems are steady state.
- Turbines and pumps are considered as adiabatic devices.
- For design point conditions, the mass flow rate of the ORC was obtained fixing the net power output of the turbine at 5 MW_{e} .

- Geothermal fluid are considered as a mixture of H_2O and CO_2 .
- CO₂-H₂O mixture properties are estimated with a thirdorder EOS model.
- A CO₂ Solubility model
 (Duan and Sun, 2003) is
 implemented in the in-house
 code for THD properties.

Duan Z., Sun R., An improved model calculating CO_2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical Geology, 193, 2003, 257 – 271

EGW 2019

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Thermodynamic model results

Sensitivity Analysis (CO₂ content)

Cases		W _c	<i>т</i> _{GEO}	$\dot{m}_{\rm CO_2}$	Q _{HE,GEO}	η_I	η_{II}
		[kW]	[kg/s]	[kg/s]	[kW]		
	0.5%CO ₂	7.307	10.77	0.05384	26221	0.1906	0.5443
%CO	1%CO ₂	14.7	10.83	0.1083	26260	0.1903	0.5462
Variation	2%CO ₂	29.76	10.97	0.2193	26339	0.1897	0.5498
$W_{net} = 5 MW$ $P_{reini} = 60 bar$	4%CO ₂	61.02	11.24	0.4496	26503	0.1884	0.557
$\eta_c = 0.82$	6%CO ₂	93.89	11.53	0.6918	26675	0.187	0.5645
	8%CO ₂	128.5	11.84	0.947	26856	0.1856	0.5721

- Lower %CO₂ => lower W_c => higher η_I .
- Conversely, due to the better match between the main heat exchanger curves, the exergy efficiency increases with an increase of CO₂ content within the geothermal fluid stream (the input exergy is lower).

EGW 2019 ^h European Geothermal Workshop

Karlsruhe, 9-10 October 2019

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

EGW 2019

Exergo-Economic model

Exergy is defined as the maximum ٠ work that can be obtained by bringing the state of a system to equilibrium with the environment (Kotas, 1985).

$$\chi_k = \frac{\dot{\text{Ex}}_D}{\dot{\text{Ex}}_{D,tot}}$$
 Exergy destruction ratio

$$\sum_{e}^{N_e} \dot{C}_{P,e,k} = \sum_{i}^{N_i} \dot{C}_{F,i,k} + \dot{Z}_k \quad \text{Exergy cost bal}$$

lance

Bejan A., Tsatsaronis G., Moran M.J.: Thermal Design and Optimization, John Wiley & Sons, (1996).

Kotas, T., The Exergy Method of Thermal Plant Analysis, Elsevier, 1985.

The Exergo-Economic Analysis (EEA) combines the exergy and the economic analyses, in order to provide a clear and efficient evaluation of the cost effectiveness of each component of the power plant, introducing the costs per exergy unit (Bejan et al., 1996).

	k Com	ponent	Cost balance equations	Auxiliary equations	
	1	Р	$c_2 \dot{E} x_2 = c_1 \dot{E} x_1 + c_{W_p} \dot{W}_p + \dot{Z}_p$	$c_{W_p} = c_{W_t}$	
	2 F	RHE	$c_3 \dot{E} x_3 + c_8 \dot{E} x_8 = c_2 \dot{E} x_2 + c_7 \dot{E} x_7 + \dot{Z}_{HE}$	$c_7 = c_8$	
	3 N	1HE	$c_6 \dot{E}x_6 + c_{31}\dot{E}x_{31} + c_{40}\dot{E}x_{40} = c_3 \dot{E}x_3 + c_{30}\dot{E}x_{30} + \dot{Z}_{HEgeo}$	$c_{30} = c_{31}$ $c_{40} = c_{30}$	
	4	Т	$c_7 \dot{E} x_7 + c_{W_t} \dot{W}_t = c_6 \dot{E} x_6 + \dot{Z}_t$	$c_{6} = c_{7}$	
	5 (CON	$c_1 \dot{E} x_1 + c_{21} \dot{E} x_{21} = c_8 \dot{E} x_8 + c_{20} \dot{E} x_{20} + \dot{Z}_{cond}$	$c_{20}=0$ $c_{21}=c_{20}$	
	6 F	PreC	$c_{41}\dot{E}x_{41} + c_{51}\dot{E}x_{51} = c_{40}\dot{E}x_{40} + c_{50}\dot{E}x_{50} + \dot{Z}_{PC1}$	$c_{50}=0$ $c_{40}=c_{41}$	
	7	C1	$c_{42}\dot{E}x_{42} = c_{41}\dot{E}x_{41} + c_{W_{c1}}\dot{W}_{c1} + \dot{Z}_{c1}$	$c_{W_{c1}} = c_{W_t}$	
	8	IC1	$c_{43}\dot{E}x_{43} + c_{53}\dot{E}x_{53} = c_{42}\dot{E}x_{42} + c_{52}\dot{E}x_{52} + \dot{Z}_{IC1}$	$c_{52} = c_{50}$ $c_{43} = c_{42}$	
	9	C2	$c_{44}\dot{E}x_{44} = c_{43}\dot{E}x_{43} + c_{W_{c2}}\dot{W}_{c2} + \dot{Z}_{c2}$	$c_{W_{c2}} = c_{W_t}$	
1	.0	IC2	$c_{45}\dot{E}x_{45} + c_{55}\dot{E}x_{55} = c_{44}\dot{E}x_{44} + c_{54}\dot{E}x_{54} + \dot{Z}_{IC2}$	$c_{54} = c_{50}$ $c_{45} = c_{44}$	
1	1	C3	$c_{46}\dot{E}x_{46} = c_{45}\dot{E}x_{45} + c_{W_{c3}}\dot{W}_{c3} + \dot{Z}_{c3}$	$c_{W_{c3}} = c_{W_t}$	

EGW 2019 [™] European Geothermal Workshop

Karlsruhe, 9-10 October 2019

Exergo-economic Results

Component	PEC (€)	\dot{Z}_k (ϵ/s)	Ċ _{D,k} (€/s)	$c_{F,k}$ (\in/kWh)	$c_{P,k}$ (\in/kWh)	
Р	193464	0.001558	0.0008032	0.07148	0.1056	
RHE	438204	0.00353	0.00242	0.05154	0.1009	
MHE	2.920E+06	0.02352	0.009514	0.01804	0.03419	
Т	2.651E+06	0.02136	0.008596	0.05154	0.07148	
CON	656282	0.005286	0.01634	0.05538	0.2662	
PreC	181662	0.001463	0.000003835	0.01804	1.819	
C1	126231	0.001017	0.0001109	0.07148	0.1835	
IC1	185022	0.00149	0.000053	0.05869	0.8226	
C2	120236	0.0009685	0.0001071	0.07148	0.1837	
IC2	219831	0.001771	0.00006767	0.08384	1.008	
C3	113008	0.0009102	0.0001005	0.07148	0.1834	

- **PEC** = Purchased Equipment Cost
- \dot{Z}_k = Sum of the cost rates associated with investments and operation and maintenance for the k-th component
- $\dot{C}_{D,k}$ = Exergy destruction cost rate
- $c_{F,k} = \text{costs per exergy unit of fuel}$
- $c_{P,k}$ =costs per exergy unit of product

UNIVERSITÀ DIEF DEGLI STUDI Dipartimento di FIRENZE

EGW 2019 ^h European Geothermal Workshop

Karlsruhe, 9-10 October 2019

Dynamic Simulation of the Reinjection Well

- The model was developed in Honeywell UniSim[®], including control of the flow rate by valve throttling and estimation of the water level.
- Two approaches are considered for the simulation of the drain injection process.
- In the first design (**Tank-Tank: TT**), the well is simplified with two cascade tanks and a valve.
- In the second design a preliminary cylindrical tank and a pipe segment are utilized (Tank-Pipe: TP).

Water level change as the result of reducing valve opening in

EGW 2019

^h European Geothermal Workshop Karlsruhe, 9-10 October 2019

Response time of the reinjection well

• Stabilization time of water level in the start-up phase.

۲

^h European Geothermal Workshop Karlsruhe, 9-10 October 2019

A

EGW 2019

Flow-pressure variations in the reinjection well

580

- determined by **saturation conditions**.
- It is possible to guarantee adequate pressure at wellhead either by hydrostatic head or using a circulation pump on the condensate line.
 - Sensitivity analysis of the total reinjection geothermal plant in Castelnuovo

400

380

5

6

Pressure inlet (bara)

10

9

8

[°] European Geothermal Workshop Karlsruhe, 9-10 October 2019

Conclusions

- A model of the Castelnuovo power plant was presented with a focus on power generation performance (design) and on the reinjection process (including transients/dynamic simulation).
- Sensitivity analyses were performed: the performance of the system for the power generation (CO₂) lacksquarecontent) and the compression train (delivery pressure and 2-phase reinjection depth) were assessed over a wide operating range.
- The dynamic simulation model provided information on the unsteady behaviour of the process with lacksquarerelevant info on how to manage two-phase flow conditions at the reinjection well head.

7th European Geothermal Workshop Karlsruhe, 9-10 October 2019

Sensitivity analysis of the total reinjection geothermal plant in Castelnuovo

Daniele Fiaschi¹, Giampaolo Manfrida¹, Pouriya Niknam¹ and <u>Lorenzo Talluri¹</u>

> ¹Department of Industrial Engineering (DIEF) University of Florence Florence, Italy <u>lorenzo.talluri@unifi.it</u>