Speaker
Description
The fluid flow in Enhanced Geothermal Systems (EGS) is dominated by hydraulically stimulated fractures and faults which are the key elements of their hydraulic performance and sustainability. At the fault scale, the flow performance is influenced by the aperture distribution which is strongly dependent on the fault roughness, the geological fault sealing, the relative shear displacement, and the amount of flow exchange between the matrix and the fault itself. On the mechanical side, stiffness and strength of partly sealed fault might alter or reinforced the mechanical behavior of the fault zone in particular with respect to new stimulations. In order to quantify the impact of chemical soft stimulation in EGS reservoir on the hydro-mechanical properties of a fault-rock system that includes fault-filling material, we conducted numerical flow through experiments of a granite reservoir hosting one single partly sealed fault of size 512x512~