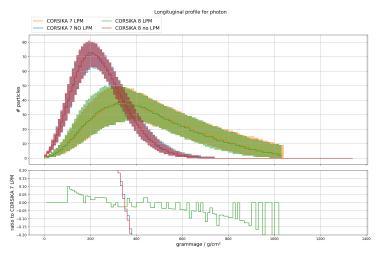


Updates from LPM showers

Jean-Marco Alameddine, Alexander Sandrock 2023-01-26

Theory and Methodology

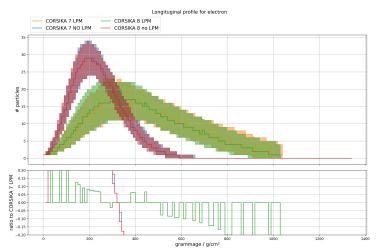

- The LPM effect describes a suppression of the bremsstrahlung and pair production cross sections at very-high energies
 - → Effect becomes noticable for interactions in air (at normal temperature and pressure) at energies above ≈ 10¹⁶ eV¹
- Current methodology:
 - 1. Check if interaction is a bremsstrahlungs or pair production interaction
 - 2. Calculate LPM suppression factor $s(E, v, \rho) \in [0, 1]$
 - 3. Sample random number ξ
 - 4. If $\xi > s$, discard particle interaction

¹see: Heck, D. and J. Knapp (1998), Tech rep. FZKA 6097

First simulations

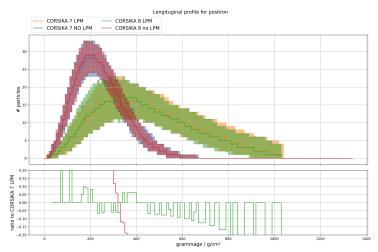
■ Simulation of 10¹¹ GeV EM showers, cut at 100 PeV, statistics of 1000 showers.

Next steps


- First results look promising
- Implementation on CORSIKA 8 branch lpm_effect (here)
 - → Requires PROPOSAL version v7.5.0
 - → I will open a draft PR when official conan package of proposal/v7.5.0 is available (O(hours))
- What would be good/necessary cross checks to further verify results?

Backup slides

First simulations


Simulation of 10¹¹ GeV EM showers, cut at 100 PeV, statistics of 1000 showers.

First simulations

Simulation of 10¹¹ GeV EM showers, cut at 100 PeV, statistics of 1000 showers.

