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g Motivation

Observation from multiple experiments:
subtle differences between data and simulations

• Simulations fine by eye & in distribution checks
• usually fine for analytically motivated reconstructions
• mostly fine for shallow learning (expert-designed features)

• Deep Learning can rely on subtle systematic differences
• Performance estimates can be unreliable
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g How to approach that?

1) Change nothing: see if pipeline behaves as expected on data
• Effort & doesn’t solve the issue

2) Improve simulations
• Often not realistic

3) If distributions in data are known: classify a mixed set for data-MC
• Easy & fast
• Fine if classification fails - doesn’t help otherwise

4) Train on calibration or reconstructed data
• Can introduce bias

5) Train unsupervised autoencoder on the data
• Helps
• Comes at a cost

6) Maybe WGANs?
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g Unsupervised autoencoder

• Pretrain autoencoder
on data

• freeze encoder part
• add (dense) layers
• train supervised

Claim: Insensitive to
differences
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g KM3NeT/ORCA test

• 4D XYZT data, in 3D projections
• Binary classification, set one bin to the correct class in “simulations”
• Worst case for supervised: Maximal correlation with target value
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Simulated data with added up-down information
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g Does this work?

Supervised training on “simulations” (with true class information):
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Perfect performance on “simulations”, random guessing for “data”
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g Does this work?

Training encoder unsupervised on “data”, dense supervised on “simulations”:
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Hardly any change in performance!
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g Other example

Noise for “simulations” 10 kHz, “data” 20 kHz
Best case for supervised learning: no correlation with target class
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Still significant change in performance (+50% background)
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g Other example

With unsupervised encoder training
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Small changes, as good as trained directly on noisy “data”
The catch: Worse than supervised learning
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g Investigations

• Effect of different hyperparameters
• Data should contain all relevant signatures
• Autoencoder with smallest loss not always best for all tasks

All investigations by Stefan Reck @ ECAP, Friedrich-Alexander-University
Erlangen-Nürnberg
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g Summary

• Subtle systematic deviations between data and sim. are common

• Deep Learning in danger to rely on them
⇒ if so, estimates unreliable for real world application

• Unsupervised training of first layers on data
• gives reliable estimates
• doesn’t reach best supervised performance so far

(not always expected to be reachable)
• optimization soon

Thank you for your attention!
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