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Motivation
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Observation from multiple experiments:
subtle differences between data and simulations

e Simulations fine by eye & in distribution checks

XZ - projection
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usually fine for analytically motivated reconstructions
mostly fine for shallow learning (expert-designed features)
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Deep Learning can rely on subtle systematic differences
Performance estimates can be unreliable

YZ - projection
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How to approach that?

1) Change nothing: see if pipeline behaves as expected on data
e Effort & doesn’t solve the issue

2) Improve simulations
e Often not realistic

3) If distributions in data are known: classify a mixed set for data-MC

e Easy & fast
e Fine if classification fails - doesn’t help otherwise

4) Train on calibration or reconstructed data
e Can introduce bias

5) Train unsupervised autoencoder on the data

e Helps
e Comes at a cost

6) Maybe WGANs?



Unsupervised autoencoder
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e Pretrain autoencoder

on data
e freeze encoder part
e add (dense) layers
e train supervised

Claim: Insensitive to
differences

Input Cell

Kernel
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Convolutional Auto Encoder
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Convolutional Neural Network (CNN)
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KM3NeT/ORCA test

e 4D XYZT data, in 3D projections
e Binary classification, set one bin to the correct class in “simulations”
e Worst case for supervised: Maximal correlation with target value

Simulated data with added up-down information

Manipulated simulation Original simulation as 'measured' data
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Does this work?
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Supervised training on “simulations” (with true class information):

Unfrozen network performance with manipulated simulations
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Perfect performance on “simulations”, random guessing for “data”



Does this work?
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Training encoder unsupervised on “data”, dense supervised on “simulations”:

Autoencoder-encoder network performance with manipulated simulations
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Hardly any change in performance!
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Other example

Noise for “simulations” 10 kHz, “data” 20 kHz
Best case for supervised learning: no correlation with target class

Unfrozen network performance with noisy data
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Still significant change in performance (+50% background)
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Other example

With unsupervised encoder training

Autoencoder-encoder network performance with noisy data
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Small changes, as good as trained directly on noisy “data”
The catch: Worse than supervised learning



Investigations
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e Effect of different hyperparameters
e Data should contain all relevant signatures

e Autoencoder with smallest loss not always best for all tasks

Original

Prediction
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All investigations by Stefan Reck @ ECAP, Friedrich-Alexander-University
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Summary

e Subtle systematic deviations between data and sim. are common

e Deep Learning in danger to rely on them

= if so, estimates unreliable for real world application
e Unsupervised training of first layers on data

e gives reliable estimates

e doesn’t reach best supervised performance so far

(not always expected to be reachable)
e optimization soon

Thank you for your attention!

Convolutional Auto Encoder

O

O

\

/

O
/NS N\
o O O O
/NSNS NS\

| X XX X



