Concrete goals and plans for progress

Alexander Schmidt (RWTH Aachen)

2nd Workshop of big data science for (astro)particle physics 21. Feb. 2018

we need progress to survive!

 high-lumi LHC will require 60x more CPU resources than 2016 LHC

we need progress to survive!

 high-lumi LHC will require 60x more CPU resources than 2016 LHC

- CPU performance growth has hit the wall
- factor 10 in resources missing to run HL-LHC

new technologies are emerging and have great success:

- parallel computing
- deep machine learning
- virtualisation
- ...

are we (astro/particle physicists) "leading" the developments just as 20 years ago?

- it is now a multi billion EUR industry (google, facebook, amazon)
- we should not be simple customers!
- it's our job too, to define the field

what is the optimal strategy for our community to benefit?

- workshops like today!
- more workshops?
- a major cross-community strategy?

our resources are largely dedicated to physics research at the same time we need to hugely invest into software/computing

facing all this, we need cross-community effort to

- bundle resources
- do lobbying at funding agencies
- create a common strategy and long-term planning
- develop educational programs
- develop experiment-independent solutions and projects

the plan

all these considerations condensed into a cross-community project plan:

Innovative Digitale Technologien für die Erforschung von Universum und Materie

Gemeinsamer Antrag von Gruppen aus den Bereichen Elementarteilchenphysik, Hadronen- und Kernphysik und Astroteilchenphysik

- Rheinisch-Westfälische Technische Hochschule Aachen, Prof. Dr. Martin Erdmann
- Rheinische Friedrich-Wilhelms-Universität Bonn, PD Dr. Philip Bechtle
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Prof. Dr. Gisela Anton
- Goethe Universität Frankfurt am Main, Prof. Dr. Volker Lindenstruth
- Albert-Ludwigs-Universität Freiburg, Prof. Dr. Markus Schumacher
- Georg-August-Universität Göttingen, Prof. Dr. Arnulf Quadt
- Universität Hamburg, Jun.-Prof. Dr. Gregor Kasieczka
- Karlsruher Institut für Technologie, Prof. Dr. Günter Quast
- Johannes Gutenberg-Universität Mainz, Prof. Dr. Volker Büscher
- Ludwig-Maximilians-Universität München, Prof. Dr. Thomas Kuhr
- Bergische Universität Wuppertal, Prof. Dr. Christian Zeitnitz

Assoziierte Partner sind

- CERN, Dr. Markus Elsing
- DESY, Dr. Volker Gülzow
- GridKa, Dr. Andreas Heiss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Dr. Kilian Schwarz
- Forschungszentrum Jülich, Dr. Elisabetta Prencipe
- Westfälische Wilhelms-Universität Münster, PD Dr. Christian Klein-Bösing

submitted to BMBF October 2017

A: developments for the use of heterogeneous computing resources

B: application and test of virtualised software components

C: deep learning

D: event reconstruction: cost- and energy efficient use of computing resources

work area A: heterogeneous computing resources

- goal: mitigate resource gap through access to heterogeneous resources
 - opportunistic resources (free capacities on HPC centers)
 - embed "volunteer computing", scientific and commercial cloud services
 - adapt existing grid, batch systems transparent to the user

work area A: heterogeneous computing resources

- goal: mitigate resource gap through access to heterogeneous resources
 - opportunistic resources (free capacities on HPC centers)
 - embed "volunteer computing", scientific and commercial cloud services
 - adapt existing grid, batch systems transparent to the user

 A1) Werkzeuge zur Einbindung Scheduling von Cloud-Jobs Container-Technologien Checkpointing Zugang zu Experiment-Datenbanken 	 A2) Effiziente Nutzung Transiente Datencaches Transparenter Zugriff auf verteilte Daten
 A3) Workflow-Steuerung Identifikation und Steuerung In-Pilot Job-Monitoring Accounting Optimierung durch Data-Mining 	

much related to A:

- large scale deployment of virtualisation, e.g. through containers
- "infrastructure as a service"
- interoperability of components

much related to A:

- large scale deployment of virtualisation, e.g. through containers
- "infrastructure as a service"
- interoperability of components

 B1) Tests der Technologiekomponenten Implementierung und Tests auf verschiedenen Plattformen von Speicher- und Cachinglösungen und virtualisierter Dienste (Datenbanken, Monitoring, Accounting). 	B2) Job- und Ressourcenmanagement Jobverteilung und Überwachung in der Umgebung heterogener Computingres- sourcen unter Einbeziehung von Contai- nervirtualisierung.
 B3) Virtualisierung von Nutzerjobs Erfassung der Anforderungen, Bestimmung und Erzeugung der Laufzeitumgebung, Erstellung des Containers und von Metadaten und Checkpointing von Containervirtuali- sierung. 	 B4) Kombinierte Tests Testen von Gesamtsystemen (Speicher, Dienste, Ressourcemanagement) auf verschiedenen Plattformen in Bezug auf Installations- und Wartungsaufwand, Performance, Skalierbarkeit und Robustheit.

- application of deep learning in (astro)particle physics
- establishment of community wide structures (synergy)

- application of deep learning in (astro)particle physics
- establishment of community wide structures (synergy)

 C1) Sensornahe Verarbeitung von Daten Signalfilter, Rauschunterdrückung Verarbeitung von zeitabhängigen Signalen 	 C2) Objektrekonstruktion Spur- und Clusterrekonstruktion, Jetbildung, Ereignisrekonstruktion Fragestellungen für Anordnung, Reihenfolge, Zuordnungen von Daten Optimierungen zur Extraktion kleiner Signale bei großem Untergrund
 C3) Netzwerkbeschleunigte Simulationen Generative adversarial networks, Anpassung von Simulationen an Datenverteilungen Evaluationsverfahren für die Qualität der Netzwerksimulationen 	 C4) Qualität von Netzwerkvorhersagen Reduzierung experimenteller systematischer Unsicherheiten Spezielle Lernstrategien Vorhersagenrelevante Information Unsicherheiten von Vorhersagen

C1: sensor-level data

- explore usability of deep learning methods at sensor level:
 - filtering of signals, noise suppression
 - large applicability: calorimeter cells, tracker hits, radio signals, photo sensors
 - time-dependent signals:
 - often not fully exploited
 - extract information hidden in sequence of signal development

C1: sensor-level data

- explore usability of deep learning methods at sensor level:
 - filtering of signals, noise suppression
 - large applicability: calorimeter cells, tracker hits, radio signals, photo sensors
 - time-dependent signals:
 - often not fully exploited
 - extract information hidden in sequence of signal development

• concrete project (Aachen):

- air-shower data at Pierre Auger radio array
- difficult signal/noise
- analyse signal time-development, amplitude, shape
- test applicability of architectures like autoencoder

• use deep learning in a wide range of physics objects:

- tracks from tracking chamber hits
- clusters from calorimeter signals
- jets from clusters
- properties of jets (flavour, charge, origin,...)
- very successful already in the past, promising for future
- concrete projects:
 - boosted jets (Hamburg),
 - classification of active galactic cores (Blazars) through EM spectrum (Erlangen)

C3: simulation

• use deep networks for simulation:

- simulation of calorimeter showers and air showers is extremely expensive
- adversarial networks can be used for simulation
- need to understand where it is useful
- develop evaluation criteria for quality of simulation
- concrete projects:
 - implement interaction of radiation with matter in a generative network to obtain full instantaneous shower simulation (Karlsruhe)
 - mass production of simulated datasets via generative networks, development of filter criteria (Munich)

• goal: define catalog of criteria for usability of DNN in physics analyses

- which information is actually used by DNN? which information is needed?
- reduce impact of systematic effects (e.g. adversarial training)
- stability/robustness of predictions, causality
- exploit already existing tools (PatternNet, PatternLRP)

goals:

- adapt (astro)particle software to modern computing architectures (GPUs)
- make software more resource-efficient
- develop experiment-independent libraries

D2) Parameterbestimmung
 Verknüpfung GenFit2-ACTS

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- new seeding algorithm
- based on parallel-friendly algorithmic structure (cellular automaton)

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- new seeding algorithm
- based on parallel-friendly algorithmic structure (cellular automaton)

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- new seeding algorithm
- based on parallel-friendly algorithmic structure (cellular automaton)

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

- new seeding algorithm
- based on parallel-friendly algorithmic structure (cellular automaton)

- quadruplet seeding: propagate triplets to fourth layer
- natural extension of current algorithm

computing time grows
 exponential with PU

- new seeding algorithm
- based on parallel-friendly algorithmic structure (cellular automaton)

 computing time grows linear with PU

	time per event CPU (ms)	time per event GPU (ms)	
Triplet propagation	66.3		 Hardware used: – CPU Intel 4771K – GPU NVIDIA K40
cellular automaton		1.6	

	time per event CPU (ms)	time per event GPU (ms)	
Triplet propagation	66.3		 Hardware used: – CPU Intel 4771K – GPU NVIDIA K40
cellular automaton	22	1.6	

	time per event CPU (ms)	time per event GPU (ms)	
Triplet propagation	66.3		 Hardware used: – CPU Intel 4771K – GPU NVIDIA K40
cellular automaton	22	1.6	

- **improve** physics performance at the same cost (easily run tracking on all events in HLT)
- or save millions of EUR at same physics performance

	time per event CPU (ms)	time per event GPU (ms)	
Triplet propagation	66.3		 Hardware used: – CPU Intel 4771K – GPU NVIDIA K40
cellular automaton	22	1.6	

- **improve** physics performance at the same cost (easily run tracking on all events in HLT)
- or save millions of EUR at same physics performance

→change our approach to algorithm development

- successfully running in CMS since 2017
- developments continue (e.g. full tracker)
- being ported to other experiments (e.g. LHCb)
- future: experiment-independent libraries

example: GenFit2-ACTS

ACTS:

- started from ATLAS track reconstruction software
- aims at encapsulating the reconstruction into generic experimentindependent package
- provides high-level data structures and algorithms
- alternative: GenFit2
- used in: Belle-II, Panda, Ship, small testbeams, ...

- concrete projects:
 - investigate usability of ACTS in non-HEP experiments. Use ACTS in GenFit2 backend. Understand the limitations and adapt the software accordingly (Karlsruhe)
 - adapt ACTS for ILC (DESY)
 - adapt ACTS for Panda (FZJ)

- computing/software in (astro)particle physics is the key to survival and the driver of fantastic new opportunities
- "local efforts" not sufficient, community-wide coordination has been initiated
- writing this community-wide project plan already established excellent communication links
- this is an iterative process and needs YOUR input