

A mobile neutron spectrometer for the Laboratori Nazionali del Gran Sasso (LNGS)

F. Pompa (University of L'Aquila & INFN LNGS), U. Pirling, F. Buchleither (Karlsruhe Institute of Technology)

Gadolinium foil

Neutron background at LNGS

Most of ambient neutron background comes from radioactive isotopes on the walls, but concentrations of **U** and **Th** vary considerably with location. Aim: reducing systematic uncertainties with a **mobile** detector.

Design choice

36 plastic scintillator modules of (25 x 5 x 5) cm for optimal **uniform** light collection, surrounded with reflector- and gadolinium foils for neutron capture. Readout with PMTs.

DAQ

Based on a FPGA-Board developed for the TRISTAN experiment: 40 input-channels, sampling rate 62.5MHz.

Pulses identified with a **boxcar** filter. Trigger on **sum**

Software

Waveform data sent to a Laptop via UDP for offline **analysis**. The Software (python 3.10) includes:

- interactive CLI to set/read registers from the board
- interactive CLI to manage data reception and target files
- library of analysis and data conversion methods

channel starts transmission of pulse-snippets within +/- 100 µs. 谢

Simulated detector response

The **pile-up** due to gamma background can lead to false coincidences \rightarrow detector is equipped with a **lead shield**. Expected signal: **12 neutrons/day**.

proton recoil

KIT – The Research University in the Helmholtz Association

