

ABSTRACT

The τ lepton is the only lepton heavy enough to decay to hadrons. Though the CP violation is well established in neutral kaons and in D and B mesons, the CP violation of the charged leptons is not expected within the Standard Model. We are searching for direct CP violation in the decay $\tau^- \to \pi^- K_S^0 (\geq 0\pi^0) \nu_\tau$ using a data sample corresponding to an integrated luminosity of 362 fb^1 .

ANALYSIS STRATEGY

The decays of tau leptons to final states containing a K_S^0 predicted to have a non-zero decay rate asymmetry in SM due to CP violation in kaon sector.

$$A_1 = \frac{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu}_\tau) - \Gamma(\tau^- \to \pi^- K_S^0 \nu_\tau)}{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu}_\tau) + \Gamma(\tau^- \to \pi^- K_S^0 \nu_\tau)}$$

The SM asymmetry is identical for decays with any number of π^0 mesons.

After the background subtraction, the final sample will contain the following decay modes:

1) $\tau^- \to \pi^- K^0 \nu_\tau (\geq 0 \pi^0)$

2)
$$\tau^- \to K^- \bar{K^0} \nu_\tau (\geq 0\pi^0)$$

3)
$$\tau^- \to \pi^- K^0 \bar{K^0} \nu_\tau (\geq 0\pi^0)$$

With their respectively decay rate asymmetries A_1 , A_2 and A_3 and fractions f_1 , f_2 and f_3 . From SM assumptions, the total asymmetry *A* is related to the signal asymmetry A_1 (from $\tau^- \to \pi^- K_S^0 \nu_{\tau}$) A2 and A3, as:

$$A = \left(\frac{f_1 - f_2}{f_1 + f_2 + f_3}\right) A_1 \tag{1}$$

REFERENCES

- [1] T. Abe and I. Adachi et al. *"Belle II Technical Design Report*", 2010.
- [2] I. I. Bigi and A. I. Sanda. "A 'known' CP asymmetry in τ decays". Phys. Lett. B, 625(47), 2005.

CPVIOLATION IN \tau DECAYS Paolo Leo MU DAYS 2023 KIT CAMPUS NORTH, KARLSRUHE, GERMANY, 14-15 SEPTEMBER 2023 BELLE II EXPERIMENT The SUPERKEKB accelerator

INTRODUCTION

The data is collected with the Belle II detector at the SuperKEKB e^+e collider at a center-of-mass energy of 10.58 GeV [1]. In this decays, the Standard Model predicts CP violation coming from the kaon mixing, and a value for the charge asymmetry of $(0.33 \pm 0.01)\%$ [2]. Any deviation from the Standard Model value would be an evidence for physics beyond the Standar Model.

- Tau pairs in $e^+e^- \rightarrow \tau^+\tau^-$ events produced back-to-back in center-of-mass system
- Possible to separate them in two opposite hemispheres defined by the plane perpendicular to the thrust axis.
- Signal side
 - $\triangleright 1 K_S^0$ reconstructed from the two pions
 - ▷ 1 charged track (not identified as kaon)
 - ▷ Any number of π^0
- Tag side
 - ▷ Electron or muon

CURRENT STATUS

We are currently studying the two main systematic effects that affects our analysis. The asymmetry of charged pion detection is being studied using the decay mode $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$ as a con-

Asymmetric beam energy	• Com
▷ e^{-} (7 [GeV]) and e^{+} (4 [GeV])	arou
Holds world record instantaneous luminos- ity of $4.7 \cdot 10^{34}$ cm ⁻² s ⁻¹	• Data
$\sigma(e^+e^- \Rightarrow \Upsilon(4S) \Rightarrow B\bar{B}) = 1.05 \text{ nb.}$ $\sigma(e^+e^- \Rightarrow \tau^+\tau^-) = 0.919 \text{ nb.}$	• Curr
▷ Not only a B but also τ factory.	• Expe

METHODS

trol sample. The asymmetry in the K^0 and \overline{K}^0 nuclear interaction is being computed through a theory model simulation.

posed of 7 major subdetectors arranged and the interaction point.

collected since 2019: 428 fb $^{-1}$.

rently in long shutdown.

ected to restart by the end 2023

• After the reconstruction, some preselection cuts are applied in order to remove the obvious non- τ pair background.

• To obtain an high purity sample without affecting the efficiency, we use a 2-step BDT to remove $q\bar{q}$ background and select good K_S^0 . • Then we study all the possible systematics that could affect our measurement. The main systematics comes from:

- Asymmetry of charged pion detection
- \triangleright Asymmetry in the K^0 and \overline{K}^0 interaction with the material

• We compute the final measurement using Equation (1).

CONTACT INFORMATION

Location DESY, Notkestraße 85, 22607 Hamburg Email paolo.leo@desy.de