Axion Clouds around Pulsars

Samuel J. Witte

Light Dark World 2023 Karlsruhe September 19, 2023

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Based On:

Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022) Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Axion clouds around pulsars

Assumptions: There exists an axion which:

- 1) Couples to electromagnetism $\mathscr{L} \supset -g_{a\gamma\gamma}a(\vec{E} \cdot \vec{B})$
- 2) Has a mass $10^{-10} \text{ eV} \leq m_a \leq 10^{-4} \text{ eV}$

Samuel J. Witte (ICCUB / Barcelona)

Take Home : All active neutron stars (pulsars) are surrounded by dense clouds of axions

Pulsar magnetospheres

Pulsars at first order:

- $M_{\rm NS} \sim 1 2M_{\odot}, R_{\rm NS} \sim 10\,{\rm km}$
- Dipolar magnetic field $B \sim 10^9 10^{15} G$
- Rotational period $P \sim 10^{-3} 10 \,\mathrm{s}$
- Slowly spin-down on the timescale of kyr-Myr

Large \overrightarrow{B} induces strong electric field \overrightarrow{E}

$$F_{\overrightarrow{E}} \gg F_{\text{gravity}}, F_{\text{binding}}$$

Pulsar magnetospheres

Plasma Behaviour

(Near the neutron star)

1. Plasma flows along magnetic field lines Acceleration only possible if $\vec{E} \cdot \vec{B} \neq 0$

2. Plasma tries to screen electric field If $\rho_e \ge \rho_{\min}$, $\overrightarrow{E} \to 0$

Stable force-free solution?

- $|\bullet \overrightarrow{E}$ extracts ρ_{\min}
- ρ_{\min} screens electric field, $\vec{E} \cdot \vec{B} \to 0$
- No e^{\pm} being sourced, stable co-rotation

Goldreich-Julian Model

Goldreich & Julian 1969

Goldreich-Julian requires *co-rotating* plasma

Polar cap dynamics Part 1: Vacuum Phase

Unscreened $\overrightarrow{E} \cdot \overrightarrow{B}$ extracts, and accelerates, current

Neutron Star Surface

Samuel J. Witte (ICCUB / Barcelona)

Part 2: Screening Phase

Quasi-periodic on timescales $t \sim O(\mu s)$

Simulations curtesy of F. Cruz and A. Chen

MHz-GHz fluctuations source axions with *MHz-GHz energies*

Simulations curtesy of F. Cruz and A. Chen

MHz-GHz fluctuations source axions with *MHz-GHz energies*

Simulations curtesy of F. Cruz and A. Chen

MHz-GHz fluctuations source axions with *MHz-GHz energies*

Production of axion clouds

Production

 $(\sim \mu s)$

Samuel J. Witte (ICCUB / Barcelona)

Evolution bound axions (~ minutes)

Pulsar spin-down (kyr to Myr)

Axion Clouds

Tentative assumption: axions are produced and no longer interact

Evolution of bound axions

Can axions scatter inside the neutron star? Typically, no.

Can axions self-interactions alter the evolution? Typically, no.

Can axions convert to electromagnetic radiation? Yes & no. Is $\omega_p \leq \omega_a$?

Can axions alter the electrodynamics of the polar cap?

Yes, if the coupling is large enough.

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Energy losses: radiation

Noordhuis, Prabhu, Weniger, SJW (2023)

Evolution of bound axions

Can axions scatter inside the neutron star? Typically, no.

Can axions self-interactions alter the evolution? Typically, no.

Can axions convert to electromagnetic radiation? Yes & no. Is $\omega_p \leq \omega_a$?

Can axions alter the electrodynamics of the polar cap?

Yes, if the coupling is large enough.

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Energy losses: the polar cap

Part 1: Vacuum Phase

Neutron Star Surface

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Axions induce electric field:

$$\overrightarrow{E}_a \propto \sqrt{\rho_a} \ \overrightarrow{B} e^{-i\omega_a t}$$

(When axions are light, field is uniform)

Axions can dissipate energy in the current itself

 $\rho \rightarrow \rho_{\text{saturate}}$

as $\dot{E}_{inj} \sim \dot{E}_{diss}$

Axion Clouds

Samuel J. Witte (ICCUB / Barcelona)

Noordhuis, Prabhu, Weniger, SJW (2023)

17

Maximum density of axion clouds

To what extent does the axion density depend on $g_{a\gamma\gamma}$?

Samuel J. Witte (ICCUB / Barcelona)

Noordhuis, Prabhu, Weniger, SJW (2023)

Observable Consequences

Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022) Noordhuis, Prabhu, Weniger, **SJW** (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Resonant radio emission

Sharp kinematic endpoint inevitably arises in radio spectrum

Spectral end-point (radio)

Current radio observations should have strong sensitivity to spectral line...

A more detailed look at systematics is in progress...

Noordhuis, Prabhu, Weniger, SJW (2023)

Axion back-reaction

Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Pulsar Nulling: J1119-6127

Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Plot made using cajohare.github.io/AxionLimits/

Samuel J. Witte (ICCUB / Barcelona)

Conclusions

The ubiquitous presence of dense axion clouds opens promising new avenues for detection!

- •Distinctive signatures (spectral lines/ end-points, transients bursts, pulsar nulling)
- •Strong discovery potential over wide range of parameter space

Axion Clouds Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022) Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

celona)

100

Back-Up

Density evolution

Maximum density achieved early in the lifetime

Growth

Saturation

 $t \lesssim \mathcal{O}(1 \, \mathrm{yr})$

 $yr \lesssim t \lesssim kyr$

$kyr \lesssim t \lesssim Myr$

 $t \gtrsim Myr$

Locally sourced axions

Samuel J. Witte (ICCUB / Barcelona)

Relativistic axion population

Axions free stream away from neutron star

Can resonantly source radio photons during escape

Observable: Broadband radio flux (on top of pulsar radio emission)

Relativistic Population

First search for radio emission from locally sourced axions

- •Uses only 27 well-studied pulsars
- •No assumption that axions are dark matter!

Noordhuis, Prabhu, SJW, Chen, Cruz, Weniger (2022)

Back-Up

Radio spectrum

Noordhuis, Prabhu, SJW, Chen, Cruz, Weniger (2022)

Noordhuis, Prabhu, Weniger, **SJW**(To appear)

Quenching of bound state growth

Absorption in Neutron Star:

Noordhuis, Prabhu, Weniger, SJW (To appear)

Back-reaction on vacuum gap:

Caputo, SJW, Phillipov (In progress)

NS

$$aNN \to NN$$

 $\Gamma_{\rm abs,eff} = \Gamma_{\rm abs} \left(1 - e^{-E/T}\right) \sim \left(\frac{E}{T}\right) \Gamma$

Absorption heavily suppressed in low energy limit

$$\nabla \cdot \vec{E} = \rho - g_{a\gamma\gamma} \vec{B} \cdot \nabla a$$

Large axion cloud can modify the plasma dynamics that drive production

$$\rho_{\max}^{br}(g_{a\gamma\gamma}, z = R_{\rm NS})$$

Overview

Noordhuis, Prabhu, SJW, Chen, Cruz, Weniger (2022)

Credit: Rui Hu, Pigeon code, <u>https://github.com/hoorayphyer/Pigeon</u>

Magnetosphere Axisymmetric Rotator

Image credit: Bransgrove & Beloborodov

