THROUGH SANIYA HEEBA TSI, MCGILL U. Based on: 2304.06072, 2308.01960 (W/ N. Brahma, T. Lin & K. Schutz)

THE AGES

LIGHT DARK WORLD (2023), KARLSRUHE

West CO

e

WE KNOW THAT DARK MATTER EXISTS

INDIRECT COSMOLOGY DETECTION (CMB, BBN ...)

 \sim

PRODUCTION

92

SM

SM

DM DIRECT DETECTION

INDIRECT COSMOLOGY DETECTION (CMB, BBN ...)

SM

SM

DIRECT DETECTION

N DM

DM

92

WHAT IF DM INTERACTIONS DON'T CONSERVE KINETIC ENERGY?

D. Tucker-Smith & N. Weiner (2001) D. P. Finkbeiner & N. Weiner (2007) N. Arkami-Hamed et al (2008)

WHAT IF DM INTERACTIONS DON'T CONSERVE GROUND STATE EXCITED STATE MASS ا ا

SPLITTING

D. Tucker-Smith & N. Weiner (2001) D. P. Finkbeiner & N. Weiner (2007) N. Arkami-Hamed et al (2008)

• • •

"INELASTIC DM"

WHAT IF DM INTERACTIONS DON'T CONSERVE KINETIC ENERGY2 $L \supset ig_{\chi} A_{\mu} \chi^* \gamma^{\mu} \chi$ GROUND STATE EXCITED STATE MASS ۶ (

D. Tucker-Smith & N. Weiner (2001) D. P. Finkbeiner & N. Weiner (2007) N. Arkami-Hamed et al (2008)

• • •

INELASTIC DM"

SPLITTING

WHAT IF DM INTERACTIONS DON'T CONSERVE KNETCENERGY2 L D ign An X*YMX GROUND STATE EXCITED STATE Endothermic and exothermic MASS

SPLITTING

D. Tucker-Smith & N. Weiner (2001) D. P. Finkbeiner & N. Weiner (2007) N. Arkami-Hamed et al (2008)

• • •

INELASTIC DM"

reactions change DM phase space and result in unique signatures at different points in DM history

energies

Excess

XENON1T

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

$\mathcal{I} \supset \left| D_{\mu} \phi_{\rho} \right|^{2} + \frac{\epsilon}{2} F_{\mu\nu} F^{\mu\nu} + \frac{4}{3} \chi \overline{\psi} \psi \phi_{\rho} + g_{\chi} A'_{\mu\nu} \chi^{\mu} \overline{\psi} \psi + m_{\mu} \overline{\psi} \psi$

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

$\mathcal{I} \supset \left[D_{\mu} \phi_{\rho} \right]^{2} + \underbrace{\in} F_{\mu\nu} F^{\mu\nu} + \underbrace{y_{\chi} \overline{\psi} \psi}_{\rho} + \underbrace{g_{\chi} A'_{\mu} \gamma^{\mu} \overline{\psi} \psi}_{\rho} + \underbrace{m_{\psi} \overline{\psi} \psi}_{\rho} +$

DARK FERMION **CHARGED UNDER NEW U(1)**

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

DARK **FERMION CHARGED UNDER NEW U(1)**

PORTAL TO THE **STANDARD** MODEL **NEW DARK HIGGS THAT**

PROVIDES THE DARK PHOTON MASS

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

$\mathcal{I} \supset \left[D_{\mu} \phi_{\rho} \right]^{2} + \xi F_{\mu\nu} F^{\mu\nu} + y_{\chi} \overline{\psi} \psi \phi_{\rho} + g_{\chi} A'_{\mu\nu} \gamma^{\mu} \overline{\psi} \psi + m_{\mu} \overline{\psi} \psi$

DARK **FERMION CHARGED UNDER NEW U(1)**

PORTAL TO THE **STANDARD** MODEL **NEW DARK HIGGS THAT PROVIDES THE**

DARK PHOTON MASS

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

$\mathcal{I} \supset \left| D_{\mu} \phi_{\rho} \right|^{2} + \xi F_{\mu\nu} F^{\mu\nu} + y_{\chi} \overline{\Psi} \Psi \phi_{\rho} + g_{\chi} A'_{\mu} \gamma^{\mu} \overline{\Psi} \Psi + m_{\mu} \overline{\Psi} \Psi$

DARK **FERMION** CHARGED **UNDER NEW U(1)**

GENERATES A MAJORANA MASS TERM FOR THE **FERMION!**

PORTAL TO THE **STANDARD** MODEL **NEW DARK HIGGS THAT PROVIDES THE**

DARK PHOTON MASS

Duerr, Ferber, Garcia-Cely et al (2020) Elor, Liu, Slatyer et al (2018)

$\mathcal{I} \supset \left| D_{\mu} \phi_{\rho} \right|^{2} + \xi F_{\mu\nu} F^{\mu\nu} + y_{\chi} \overline{\Psi} \Psi \phi_{\rho} + g_{\chi} A'_{\mu} \gamma^{\mu} \overline{\Psi} \Psi + m_{\mu} \overline{\Psi} \Psi$

DARK **FERMION** CHARGED **UNDER NEW U(1)**

MASS SPLITTING

GENERATES A MAJORANA MASS TERM FOR THE **FERMION!**

INELASTIC DARK MATTER MODELS ARE MINIMAL EXTENSIONS OF THE STANDARD MODEL WITH A DIVERSITY OF SIGNATURES. HAVE WE EXHAUSTED THIS PARAMETER SPACE?

1. Thermal production: Freeze-out

1. Thermal production: Freeze-out

Excited state thermally depleted after production

 $n_{\chi^*} \sim e^{-\delta/T} n_{\gamma}$

1. Thermal production: Freeze-out

Excited state thermally depleted after production

 $n_{\chi^*} \sim e^{-\delta/T} n_{\chi}$

Benefit: Easy to evade CMB bounds coming from late-time DM annihilation into SM states. Can make DM light!

1. Thermal production: Freeze-out

Excited state thermally depleted after production

$\rightarrow \Omega_{\gamma}h^2 = 0.12$

 $n_{\gamma^*} \sim e^{-\delta/T} n_{\gamma}$

Benefit: Easy to evade CMB bounds coming from late-time DM annihilation into SM states. Can make DM light! Downside: Lose sensitivity to direct and indirect detection searches that rely on the excited state

THERMAL HISTORIES BEYOND FREEZE-OUT 1. EARLY KINETIC DECOUPLING (OR THERMALISH DARK MATTER)

PARAMETER SPACE: RESONANT INELASTIC DM

 $\delta \ll m_{\chi}$

 $\delta \sim eV - keV$

ß

 $m_{\chi} \sim \text{MeV} - \text{GeV}$

RESONANT INELASTIC DM

A resonance in the theory, enhances the annihilation cross-section and reduces the couplings required to produce DM

...but causes the DM to kinetically decouple

Evades CMB bounds by reducing the cross-section at late times!

Brahma, **SH** & Schutz, arXiv: 2308.01960 Bernreuther, **SH** & Kahlhoefer, arXiv: 2010.14522

Solve coupled Boltzmann equations!

Binder et al, arXiv: 2103.01944

$$m_{\chi} = 10 \text{ MeV} \qquad m_{\chi} = 100 \text{ MeV} \qquad m_{\chi} = 1 \text{ GeV} \qquad m_{\chi} = 10$$
$$\epsilon_R = 0.1 \qquad \epsilon_R = 0.01 \qquad \epsilon_R = 0.001$$

ORDER ONE FRACTION OF THE EXCITED STATE AT LATE TIMES

Safe from CMB for eV-scale mass splittings, because of small couplings!

SIGNATURES: DIRECT AND INDIRECT DETECTION

See also: Coogan et al, 2104.061682

SIGNATURES: DIRECT AND INDIRECT DETECTION

See also: Coogan et al, 2104.061682

SIGNATURES: ACCELERATORS

Resonant sub-GeV DM as a thermal target

RESONANT INELASTIC DARK MATTER BROADENS THE THERMAL TARGET, AND PROVIDES A WAY TO MAKE "LIGHT" DARK MATTER

THERMAL HISTORIES BEYOND FREEZEOUT

PARAMETER SPACE INELASTIC FIMP DM

$m_{\chi} \sim \text{GeV} - \text{TeV}$

$\delta \ll m_{\chi}$ $\delta \sim MeV - GeV$

6

INELASTIC FIMP DM

INELASTIC FIMP DM

NELASTIC FIMP DM

For $m_{\rho} < \delta \ll m_{A'}$ decays into $\ell^+ \ell^-$ allowed.

Small freeze-in couplings result in long lived particles.

The coupling combination that sets the DM abundance also results in interesting late time cosmology

50% of the DM is warm (ish) $\langle v_{\rm kick} \rangle \approx \frac{\delta}{m_{\chi}}$

50% of the DM is warm (ish) $\langle v_{\rm kick} \rangle \approx \frac{\delta}{m_{\chi}}$

Extra energy injected into the SM plasma $\langle E_{e^+e^-} \rangle \approx \delta$

FOLOWING THE LEPTONS

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLLOWING THE LEPT When does the decay happer

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLLOWING THE LEPT When does the decay happer

Destruction of light elements

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLLOWING THE LEPT When does the decay happer

 $\tau \sim 10^7$

Destruction of light elements

CMB Spectral Distortions

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLLOWING THE LEPT' When does the decay happer

Destruction of light elements

CMB Spectral Distortions CMB Anisotropies

 $\tau \sim 10^7$

 $\tau\gtrsim 10^{12}$

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLOWING THE LEPT When does the decay happer

Destruction of light elements $\tau \sim 10^7$ **CMB** Spectral **Disto**rtions CMB $\tau \gtrsim 10^1$ Anis $\tau \sim 10^{16} \,\mathrm{s}$

Lyman- α

V. Poulin et al, arXiv: 1610.10051, M. Lucca et al, arXiv: 1910.04619, T.R. Slatyer & C. Wu, arXiv: 1610.06933, H. Liu et al, arXiv: 2008.01084

FOLLOWING THE GROUND STATE

Compare the free-streaming length to Warm Dark Matter

Nadler, Birrer et al (2022)

Nadler, Birrer et al (2022)

Nadler, Birrer et al (2022)

FREZZEN AT COLLDERS?

Independently constrain the dark photon

FREZZENAT COLLDERS?

Independently constrain the dark photon

FREZZENATCOLLDERS?

Independently constrain the dark photon

FREZZENATCOLLDERS?

Independently constrain the dark photon

INELASTIC FREEZE-IN GIVES A CONSISTENT THERMAL HISTORY FOR DM PRODUCTION AT DECAY, AND PROVIDES A TARGET FOR COSMOLOGICAL AND COLLIDER SEARCHES FOR DARK MATTER

BY RELATING EARLY AND LATE TIME DM BEHAVIOUR, THE UNIVERSE CAN BE USED AS A GIANT LABORATORY TO CONSTRAIN DM

INELASTIC DM IS A SIMPLE EXTENSION OF THE SM THAT GIVES QUALITATIVELY NEW SIGNATURES AT A RANGE OF SCALES

THE PHENOMENOLOGY OF INELASTIC DM BEYOND FREEZE-OUT IS YET TO BE CONSISTENTLY MAPPED OUT!

EARY KNETC DECOUPLING

Annihilations become resonant!

SUCH INTERACTIONS HAVE A UNIQUE PHENOMENOLOGY

Sensitive to the fraction of excited state at late times

See also: Emken, Frerik, SH & Kahlhoefer, arXiv: 2112.06930

Bloch et al, arXiv: 2006.14521

MASS SCALNG

MASS SCALNG

PARAMETER SPACE

Simple UV completing with a dark Higgs symmetry breaking:

$$m_{A'} = 2g_{\chi}v_D, \quad \delta = 2\sqrt{2}y_{\chi}v_D, \quad n$$

Assumptions:

- Dark Higgs heavier than everything else, $m_{h_D} \gg \text{TeV}$
- Dark photon in the MeV-GeV range and DM in the GeV-TeV range
- Dark photon **not** in thermal equilibrium at early times
- Everything satisfied for $g_{\chi} \leq e\epsilon$ and freeze-in couplings under consideration

 $m_{\chi_{1,2}} = m_D \mp \sqrt{2} y_{\chi} v_D, \quad m_{h_D} = \sqrt{2\lambda_D} v_D.$

OTHER SIGNATURES STRUCTURE

z = 0.00

CDM

100 kpc

Endothermic

Exothermic

 $m_{\gamma} = 2.3 \,\mathrm{MeV}, \delta = 0.48 \,\mathrm{eV}, \alpha_{\gamma} = 0.17$ $m_{\gamma} = 10 \,\text{GeV}, \delta = 10 \,\text{keV}, \alpha_{\gamma} = 0.1$

> O'Neil, Vogelsberger, SH, Schutz et al (2022) Simulations done in the Born regime for self-scattering

