BSM searches using (Proto)DUNE

Pilar Coloma

Based on arXiv:2304.06765 (PC, Jacobo López-Pavón, Laura Molina-Bueno and Salvador Urrea) arXiv:2309.06492 (PC, Justo Martín-Albo and Salvador Urrea)

Light Dark World, Karlsruhe (Sep 20th, 2023)

Pilar Coloma - IFT

Signals at neutrino experiments

- Feebly-interacting particles:
 - intense sources needed
 - large detectors needed
- Interactions: will induce an excess of recoils → large backgrounds!!
- Long-lived particle decays. Generally lower backgrounds, specially if:
 - Decays can be fully reconstructed
 - The detector has low density

Signals at neutrino experiments

- Feebly-interacting particles:
 - intense sources needed
 - large detectors needed
- Interactions \rightarrow scale with detector mass
- Long-lived particle decays \rightarrow scale with detector volume

ProtoDUNE

Two modules available at CERN

- Large fiducial volume, ~250 m³ → ideal for LLP searches
- Filled with LAr! \rightarrow ideal for the detection of weakly-interacting particles

Key advantages:

- Excellent reconstruction and particle ID
- Very low detection thresholds
- Main disadvantage:
 - They are on surface (tons of cosmics!)

Setup

North area EHN1 Neutr

Neutrino Platform

	Magnets T2	Magnets		Soil	EHN1	NP02
א ע	р	7 mrad	Dump			
<u>d</u>			, Β, η, π ⁰ , ρ,			
-	D, Β, η,	πº, ρ,				NP04

Main features:

- no decay volume
 - \rightarrow no neutrinos!
- very high proton energy!

Meson yields (per PoT):

π^0	η	η'	D	D_s	au
4.03	0.46	0.05	$4.8\cdot 10^{-4}$	$1.4\cdot 10^{-4}$	$7.4\cdot 10^{-6}$
ρ	ω	ϕ	J/ψ	В	Υ
0.54	0.53	0.019	$4.4 \cdot 10^{-5}$	$1.2 \cdot 10^{-7}$	$2.3\cdot 10^{-8}$

Expected number of decays

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{det} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$
Number of particles Is the final state observable? Decay probability Dependence with energy and angle
$$M \to \Psi + \dots$$

$$\Psi$$

$$\int d\ell_{det}$$

Model-independent sensitivity

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{det} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

We assume backgrounds can be efficiently suppressed

Luminosity: \rightarrow 3.5e18 PoT/yr

 \rightarrow 5 years of data taking

Model-independent sensitivity

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{det} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

We assume backgrounds can be efficiently suppressed

```
Luminosity: \rightarrow 3.5e18 PoT/yr
```

$$\rightarrow$$
 5 years of data taking

→ No correlation assumed between production and decay

Benchmark scenario: HNL

The best bounds for HNL between O(100) MeV - GeV scale come from fixed targets However:

 \rightarrow Bounds for HNL at the GeV scale significantly weaker than at lower masses

 \rightarrow U_{\tau4} is particularly hard to probe

Sensitivities to HNL decays

Coloma, López-Pavón, Molina-Bueno & Urrea, 2304.06765

Decays considered: $N \rightarrow \nu ee, \nu \mu \mu, \nu e \mu, e \pi, \mu \pi, \nu \pi^0$

Feeble Interactions

$$N_{ev} = \mathcal{N} \epsilon_{det} \cdot \langle \sigma \rangle \cdot \mathcal{BR} \operatorname{PS}(m_{\chi}, m_M) \tilde{\Phi}^{\chi}$$

production BR

$$N_{ev} = \mathcal{N} \epsilon_{det} \cdot \left[\langle \sigma \rangle \cdot \mathcal{BR} \right] \operatorname{PS} (m_{\chi}, m_M) \ \tilde{\Phi}^{\chi}$$

Model
dependence

$$N_{ev} = \mathcal{N} \epsilon_{det} \cdot \left[\langle \sigma \rangle \cdot \mathcal{BR} \right] \operatorname{PS} \left(m_{\chi}, m_{M} \right) \, \tilde{\Phi}^{\chi}$$

Coloma, López-Pavón, Molina-Bueno & Urrea, 2304.06765 Pilar Coloma - IFT

Millicharged particles

MCP would lead to an excess of low-energy electron recoils:

$$\frac{d\sigma}{dT} = \pi \alpha^2 \varepsilon^2 \frac{2E_\chi^2 m_e + T^2 m_e - T\left(m_\chi^2 + m_e\left(2E_\chi + m_e\right)\right)}{T^2 \left(E_\chi^2 - m_\chi^2\right) m_e^2}$$

Magill, Plestid, Pospelov, Tsai, 1806.03310

In the limit $E_{\chi} \gg m_{\chi}, m_e$

$$\sigma \sim \varepsilon^2 \, \left(\frac{30 \ {\rm MeV}}{T_{\rm min}}\right) \, 10^{-26} \ {\rm cm}^{-2}$$

Millicharged particles

MCP would lead to an excess of low-energy electron recoils:

$$\frac{d\sigma}{dT} = \pi \alpha^2 \varepsilon^2 \frac{2E_{\chi}^2 m_e + T^2 m_e - T \left(m_{\chi}^2 + m_e \left(2E_{\chi} + m_e\right)\right)}{T^2 \left(E_{\chi}^2 - m_{\chi}^2\right) m_e^2}$$

Magill, Plestid, Pospelov, Tsai, 1806.03310

In the limit $E_{\chi} \gg m_{\chi}, m_e$

$$\sigma \sim \varepsilon^2 \, \left(\frac{30 \ {\rm MeV}}{T_{\rm min}}\right) \, 10^{-26} \ {\rm cm}^{-2}$$

Potentially large backgrounds: our very rough estimate is $\sim 2e6 / yr$ Possible ways to handle it:

 \rightarrow beam timing

 \rightarrow angular cuts

 \rightarrow characterization using beam OFF data

Millicharged particles

MCP would lead to an excess of low-energy electron recoils:

$$\frac{d\sigma}{dT} = \pi \alpha^2 \varepsilon^2 \frac{2E_\chi^2 m_e + T^2 m_e - T\left(m_\chi^2 + m_e\left(2E_\chi + m_e\right)\right)}{T^2 \left(E_\chi^2 - m_\chi^2\right) m_e^2}$$

DUNE - LLP decays

DUNE setup

- Main differences:
 - slightly shorter distance
 - two main near detectors

- much higher number of PoT (1e21/year)
- lower proton energy (120 GeV)

Many works in the literature:

Berryman et al, 1912.07622; Jerhot et al, 2201.05170; Kelly, Kumar & Liu, 2011.05995; Batell, Huang & Kelly, 2304.11189; Brdar et al, 2011.07054; Coloma et al, 2007.03701; Co, Kumar & Liu, 2210.02462; Capozzi et al, 2108.03262; Dev et al, 2104.07681;...

DUNE setup

- Main differences:
 - slightly shorter distance
 - two main near detectors

- much higher number of PoT (1e21/year)
- lower proton energy (120 GeV)
- the LBNF beam will have a decay volume, though...

 \rightarrow more than 10° neutrino interactions per year!

Fewer works with a background calculation: Ballett, Boschi & Pascoli, 1905.00284; Breitbach et al, 2102.03383

Backgrounds

	Selection cut	Signal efficiency		Background rate/yr	
		ND-LAr	ND-GAr	ND-LAr	ND-GAr
$\mu^+\mu^-$	Two μ -like tracks only PID μ and opposite charge sign Transverse momentum < 0.125 GeV/c Angle between muons < 0.7 rad	$1.00 \\ 0.40 \\ 0.40 \\ 0.40$	$1.00 \\ 1.00 \\ 0.99 \\ 0.94$	$3545674 \\ 6226 \\ 99 \\ 0$	$70656 \\ 124 \\ 2 \\ 0$
e^+e^-	Two <i>e</i> -like tracks/showers Reconstructed ALP direction	0.10	$1.00 \\ 0.99$	9432 180	145 15
λλ	Two γ showers only Reconstructed ALP direction Angle between γ showers	0.05 0.05 0.05	0.79 0.79 —	36276 6938 1367	14222 7923
$\pi^+\pi^-\pi^0$	Two μ -like tracks, two γ showers PID π^{\pm} and charge sign Transverse momentum < 0.2 GeV/c Angle between pions < 0.15 rad	0.04 0.04 0.04 0.04	$\begin{array}{c} 0.81 \\ 0.81 \\ 0.79 \\ 0.69 \end{array}$	2030490 431035 17182 946	$40462 \\ 8589 \\ 342 \\ 19$

Coloma, Martín-Albo and Urrea, 2309.06492

Model-independent results

Coloma, Martín-Albo and Urrea, 2309.06492

Pilar Coloma - IFT

Model-independent results

Pilar Coloma - IFT

Specific ALP scenarios

 $\frac{\alpha_s}{8\pi f_a} a G^b_{\mu\nu} \widetilde{G}^{b\mu\nu}$

 $c_{\phi} \frac{\partial^{\mu} a}{f_{a}} \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi$

 $m_a(MeV)$

Coloma, Martín-Albo and Urrea, 2309.06492

Pilar Coloma - IFT

 $1/{\rm f}_a({\rm TeV}^{-1})$

Summary

- Thanks to its location, the protoDUNE modules may be exposed to a beam of new particles produced from the SPS (!!)
- ProtoDUNE@SPS could be sensitive to both decays and scattering, and has the potential to improve over current constraints:
 - With facilities already in place
 - Without interfering with experiments in the CERN North Area
 - Within a very short-timescale

→ A more detailed assessment of backgrounds and efficiencies is required (work in progress)

- On a longer timescale, DUNE has the potential to be a major player in LLP decay searches:
 - a Gaseous TPC will be key to ensure high efficiencies and sufficient background rejection

Thanks!

Work supported by Grants RYC2018-024240-1, PID2019-108892RB-100, CEX2020-001007-S, PID2022-142545NB-C21

Backup

$$N_{ev} = \mathcal{N} \epsilon_{det} \cdot \left[\langle \sigma \rangle \cdot \mathcal{BR} \right] \operatorname{PS} (m_{\chi}, m_{M}) \tilde{\Phi}^{\chi}$$

$$\langle \sigma \rangle = \frac{1}{\tilde{\Phi}^{\chi}} \int_{0}^{\infty} \int_{T^{\min}}^{T^{\max}} \frac{d\sigma}{dT} (E_{\chi}, \{X\}) \frac{d\tilde{\Phi}^{\chi}}{dE_{\chi}} dT dE_{\chi}$$

$$\stackrel{10^{-2}}{\underset{\tilde{\Phi}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset{10^{-4}}}{\overset$$

HNL fluxes

 $N_{ev} = N_{\text{PoT}} N_{trg} \epsilon_{det} \cdot \langle \sigma \rangle \cdot \Phi^{\chi}$

Coloma, López-Pavón, Molina-Bueno & Urrea, 2304.06765 Pilar Coloma - IFT

Pilar Coloma - IFT

Coloma, Fernandez-Martinez, Gonzalez-Lopez, Hernandez-Garcia, Pavlovic, 2007.03701

