

Beyond the Standard Model physics searches with double-beta decays

Elisabetta Bossio Technical University of Munich (<u>elisabetta.bossio@tum.de</u>)

Light Dark World 2023 - Karlsruhe Institute of Technology, 21 September 2023

3

 $\triangleright v$ is a special particle in the SM:

- Only neutral fermion
- **Only** *left-handed* ν 's
- \blacktriangleright Massless ν

3

 $\triangleright v$ is a special particle in the SM:

- Only neutral fermion
- ▶ Only *left-handed v*'s
- Massless ν
- Neutrino oscillations demonstrated that ν 's have masses:
 - BSM physics needed

3

 $\triangleright v$ is a special particle in the SM:

- Only neutral fermion
- ▶ Only *left-handed v*'s
- Massless ν
- Neutrino oscillations demonstrated that ν 's have masses:
 - BSM physics needed
 - Tiny masses (m_β < 0.8 eV κατριν, Nature Phys. 18, 2 (2022))?

3

 $\triangleright v$ is a special particle in the SM:

- Only neutral fermion
- ▶ Only *left-handed v*'s
- Massless ν
- Neutrino oscillations demonstrated that ν 's have masses:
 - BSM physics needed
 - Tiny masses (m_β < 0.8 eV κατριν, Nature Phys. 18, 2 (2022))?

 ν could be a *Majorana particle*:
 $\nu = \bar{\nu}$ Lepton number non-conserved

Double-beta decays

4

Two-neutrino double-beta decay: $2\nu\beta\beta$: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

SM allowed, observed in 11 isotopes (half-life $T_{1/2} \sim 10^{18} - 10^{24}$ yr)

Double-beta decays

Two-neutrino double-beta decay: $2\nu\beta\beta$: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

SM allowed, observed in 11 isotopes (half-life $T_{1/2} \sim 10^{18} - 10^{24}$ yr)

Neutrino-less double-beta decay:

 $0\nu\beta\beta:\;(A,Z)\to(A,Z+2)+2e^-$

- Lepton number non-conservation and Majorana neutrinos, BSM physics
- ▶ Not observed yet (half-life limits $T_{1/2} \gtrsim 10^{26} \text{ yr})$

Double-beta decays

4

Two-neutrino double-beta decay: $2\nu\beta\beta$: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

SM allowed, observed in 11 isotopes (half-life $T_{1/2} \sim 10^{18} - 10^{24}$ yr)

Neutrino-less double-beta decay:

 $0\nu\beta\beta:\;(A,Z)\to(A,Z+2)+2e^-$

- Lepton number non-conservation and Majorana neutrinos, BSM physics
- Not observed yet (half-life limits $T_{1/2} \gtrsim 10^{26} \text{ yr})$

Simplest mechanism: <u>exchange of light</u> <u>Majorana neutrinos</u>

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} g_A^4 \left| \mathcal{M}^{0\nu} \right|^2 \frac{m_{\beta\beta}^2}{m_e^2}$$

Simplest mechanism: <u>exchange of light</u> <u>Majorana neutrinos</u>

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}g_A^4 |\mathscr{M}^{0\nu}|^2 \frac{m_{\beta\beta}^2}{m_e^2}$$
Phase space
(lepton part)

Simplest mechanism: <u>exchange of light</u> <u>Majorana neutrinos</u>

5

Effective Majorana neutrino mass: related to neutrino parameters

$$m_{\beta\beta} = \sum_{i} m_i U_{ei}^2$$

6

 $\mathbf{D} \mathbf{\nu} \mathbf{\beta} \mathbf{\beta}$ decay half-life measurements = effective Majorana neutrino mass measurement

$$m_{\beta\beta} = \sum_{i} m_i U_{ei}^2$$

 $b 0\nu\beta\beta \text{ decay half-life measurements} = \text{effective}$ Majorana neutrino mass measurement $m_{\beta\beta} = \sum m_i U_{ei}^2$

Unknown parameters: absolute mass scale (m_{light}), mass hierarchy (NO vs IO), Majorana phases

6

Elisabetta Bossio (TUM)

 $\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{\beta} \mathbf{\beta}$ decay half-life measurements = effective Majorana neutrino mass measurement

mass hierarchy (NO vs IO), Majorana phases

Elisabetta Bossio (TUM)

 $\triangleright 0\nu\beta\beta$ decay half-life measurements = effective Majorana neutrino mass measurement

6

mass hierarchy (NO vs IO), Majorana phases

Elisabetta Bossio (TUM)

Nast experimental program to search for $0\nu\beta\beta$ decay: ton-scale experiments planned

7

Nast experimental program to search for $0\nu\beta\beta$ decay: ton-scale experiments planned

7

- Large amount of $2\nu\beta\beta$ decay data collected:
 - $\sim 10^5 10^6$ events in current experiments
 - $\sim 10^7 10^8$ events in future experiments

Nast experimental program to search for $0\nu\beta\beta$ decay: ton-scale experiments planned

7

- Large amount of $2\nu\beta\beta$ decay data collected:
 - $\sim 10^5 10^6$ events in current experiments
 - $\sim 10^7 10^8$ events in future experiments

Phase space Nuclear matrix elements Decay rate: (lepton part) (nucleon part) $[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} \mathcal{M}^{2\nu}|^2$

- Vast experimental program to search for $0\nu\beta\beta$ decay: ton-scale experiments planned
- Large amount of $2\nu\beta\beta$ decay data collected:
 - $\sim 10^5 10^6$ events in current experiments
 - $\sim 10^7 10^8$ events in future experiments

Decay rate: $[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} \mathcal{M}^{2\nu}|^2$ Nuclear matrix elements (nucleon part)

New physics in double-beta decay? E.g. New particles, RH currents, Neutrino self-interaction, Lorentz violation...

Phys. Rev. Lett. 125, 171801, <u>arXiv:2003.11836</u> Phys. Rev. D 103, 055019 (2021), <u>arXiv:2011.13387</u> Phys. Rev. D 102, 051701 (2020), <u>arXiv:2004.11919</u> M.Agostini, EB, A. Ibarra, X. Marcano, Phys. Lett. B 815 (2021) 136127 Review: EB and M.Agostini, <u>arXiv:2304.07198</u>

8

Review: EB and M.Agostini, arXiv:2304.07198

New particles coupling to neutrinos:

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + X(2X)$

8

Review: EB and M.Agostini, arXiv:2304.07198

New particles coupling to neutrinos:

 $(A, Z) \to (A, Z+2) + 2e^{-} + X(2X)$

Review: EB and M.Agostini, <u>arXiv:2304.07198</u>

Non-standard neutrino properties/interactions: $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_{BSM}$

New particles coupling to neutrinos:

$$(A, Z) \to (A, Z + 2) + 2e^{-} + X(2X)$$

8

Review: EB and M.Agostini, <u>arXiv:2304.07198</u>

New particles coupling to neutrinos:

 $(A, Z) \to (A, Z + 2) + 2e^{-} + X(2X)$

Non-standard neutrino properties/interactions:

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_{BSM}$

Non-standard neutrino properties/interactions:

 $(A, Z) \to (A, Z+2) + 2e^- + 2\bar{\nu}_{BSM}$

E.g. Lorentz violation, RH currents, Neutrino self-interactions

8

New particles coupling to

E.g. Majorons, sterile neutrino,

Z2-odd exotic fermions

 $(A, Z) \to (A, Z+2) + 2e^{-} + X(2X)$

neutrinos:

Non-standard neutrino properties/interactions:

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_{BSM}$

E.g. Lorentz violation, RH currents, Neutrino self-interactions

8

New particles coupling to

E.g. Majorons, sterile neutrino,

Z2-odd exotic fermions

 $(A, Z) \to (A, Z+2) + 2e^{-} + X(2X)$

neutrinos:

Search for BSM physics = search for distortion of the continuous electron energy spectrum

8

Review: EB and M.Agostini, arXiv:2304.07198

Light exotic fermions in double-beta decay

M.Agostini, EB, A. Ibarra, X. Marcano, Phys. Lett. B 815 (2021)

See also Phys. Rev. D 103, 055019 (2021)

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing (

approach: 4 masses, 4x4 mixing

$$m_{\nu} = (m_1, m_2, m_3, m_4)$$
 $U_{4\times 4}^{\nu} = \begin{pmatrix} U_{PMNS} & U_{\mu 4} \\ U_{PMNS} & U_{\mu 4} \\ U_{\tau 4} & U_{\tau 4} \end{pmatrix}$

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing

$$m_{\nu} = (m_1, m_2, m_3, m_4) \qquad U_{4 \times 4}^{\nu}$$

inos:
$$W$$
 e
 U_{e4} V_{e4} U_{e4} $U_{\mu4}$ $U_{\mu4$

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing $= \begin{pmatrix} U_{e4} \\ U_{PMNS} & U_{\mu4} \\ U_{\tau4} \\ U_{\tau4} \end{pmatrix}$

$$m_{\nu} = (m_1, m_2, m_3, m_4) \quad U_{4 \times 4}^{\nu}$$

Single beta decay

 $\beta: (A,Z) \rightarrow (A,Z+1) + e^- + \overline{\nu}$

e

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing $= \begin{bmatrix} U_{PMNS} & U_{e4} \\ U_{PMNS} & U_{\mu4} \\ & U_{\tau4} \end{bmatrix}$

$$m_{\nu} = (m_1, m_2, m_3, m_4) \qquad U_{4 \times 4}^{\nu}$$

Single beta decay

 $\beta: (A,Z) \to (A,Z+1) + e^- + \mathbf{X} \mathbf{N}$

e

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing

$$m_{\nu} = (m_1, m_2, m_3, m_4) \quad U_{4 \times 4}^{\nu}$$

Single beta decay

$$\beta: (A,Z) \to (A,Z+1) + e^- + X \mathsf{N}$$

Double beta decay

$$2\nu\beta\beta$$
: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

 $U_{PMNS} \mid U_{\mu4}$ $U_{\tau4}$

e

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing

$$m_{\nu} = (m_1, m_2, m_3, m_4) \quad U_{4 \times 4}^{\nu}$$

Single beta decay

$$\beta: (A,Z) \to (A,Z+1) + e^- + X \mathsf{N}$$

Double beta decay

$$2\nu\beta\beta: (A,Z) \to (A,Z+2) + 2e^- + \chi^{-1} \overline{\nu} + N$$

 $U_{PMNS} \mid U_{\mu4} \mid U_{\tau4}$

e

Many BSM extensions introduce sterile neutrinos: SM singlets only via mixing to neutrinos

Simplest approach: 4 masses, 4x4 mixing

$$m_{\nu} = (m_1, m_2, m_3, m_4) \quad U_{4 \times 4}^{\nu}$$

Single beta decay

$$\beta: (A,Z) \to (A,Z+1) + e^- + X \mathsf{N}$$

Double beta decay

$$2\nu\beta\beta: (A,Z) \to (A,Z+2) + 2e^{-} + 2e^{$$

 $U_{PMNS} \mid U_{\mu4}$ $U_{\tau4}$

e

Elisabetta Bossio (TUM)

Light Dark World 2023

11

Elisabetta Bossio (TUM)

Elisabetta Bossio (TUM)

Elisabetta Bossio (TUM)

 $\sin\theta \sim U_{e4}$

Incoherent superposition of three terms

$$\frac{d\Gamma}{dT} = \cos^4\theta \,\frac{d\Gamma_{\nu\nu}}{dT}\,\theta(T_0 - T) + 2\cos^2\theta\sin^2\theta \,\frac{d\Gamma_{\nu N}}{dT}\,\theta(T_0 - T - x_N) + \sin^4\theta \,\frac{d\Gamma_{NN}}{dT}\,\theta(T_0 - T - 2x_N)$$

 $\sin\theta \sim U_{e4}$

Incoherent superposition of three terms

$$\frac{d\Gamma}{dT} = \cos^4 \theta \left(\frac{d\Gamma_{\nu\nu}}{dT} \theta(T_0 - T) + 2\cos^2 \theta \sin^2 \theta \frac{d\Gamma_{\nu N}}{dT} \theta(T_0 - T - x_N) + \sin^4 \theta \frac{d\Gamma_{NN}}{dT} \theta(T_0 - T - 2x_N) \right)$$

SM $2\nu\beta\beta$ decay

Reduced by a factor $\cos^4 \theta$

 $\sin\theta \sim U_{e4}$

Incoherent superposition of three terms

$$\frac{d\Gamma}{dT} = \cos^4 \theta \left(\frac{d\Gamma_{\nu\nu}}{dT} \theta(T_0 - T) + 2\cos^2 \theta \sin^2 \theta \left(\frac{d\Gamma_{\nu N}}{dT} \theta(T_0 - T - x_N) + \sin^4 \theta \frac{d\Gamma_{NN}}{dT} \theta(T_0 - T - 2x_N) \right)$$

$$SM 2\nu\beta\beta decay$$

$$One sterile neutrino: \nu N\beta\beta decay$$

$$N\beta\beta decay$$

 $\sin\theta \sim U_{e4}$

Incoherent superposition of three terms

Shape distortion of the energy spectrum

$$\frac{d\Gamma}{dT} \simeq \cos^4\theta \, \frac{d\Gamma_{\nu\nu}}{dT} \, \theta(T_0 - T) + 2\cos^2\theta \sin^2\theta \, \frac{d\Gamma_{\nu N}}{dT} \, \theta(T_0 - T - x_N)$$

Shape distortion of the energy spectrum

$$\frac{d\Gamma}{dT} \simeq \cos^4\theta \, \frac{d\Gamma_{\nu\nu}}{dT} \, \theta(T_0 - T) + 2\cos^2\theta \sin^2\theta \, \frac{d\Gamma_{\nu N}}{dT} \, \theta(T_0 - T - x_N)$$

Elisabetta Bossio (TUM)

Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic

Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic

lsotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 1021	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 104
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

- Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic
- **Background rate**: dominant
 - $R_{2\nu\beta\beta}$ + other contributions

Isotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 10 ²¹	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 104
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

- Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic
- **Background rate**: dominant $R_{2\nu\beta\beta}$ + other contributions
- Systematic uncertainty: parametrized by energydependent function $s(E)=1+aE+bE^2+c/E$

lsotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 10 ²¹	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 104
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

- Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic
- **Background rate**: dominant $R_{2\nu\beta\beta}$ + other contributions
- Systematic uncertainty: parametrized by energydependent function $s(E)=1+aE+bE^2+c/E$

lsotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 10 ²¹	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 10 ⁴
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

- Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic
- **Background rate**: dominant $R_{2\nu\beta\beta}$ + other contributions
- Systematic uncertainty: parametrized by energydependent function $s(E)=1+aE+bE^2+c/E$

lsotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 1021	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 10 ⁴
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

- Quantify the sensitivity with a frequentist analysis and profilelikelihood ratio test statistic
- **Background rate**: dominant $R_{2\nu\beta\beta}$ + other contributions
- Systematic uncertainty: parametrized by energydependent function $s(E)=1+aE+bE^2+c/E$

lsotope	Experiment	Half-life [yr]	Efficiency	Exposure [mol yr]
⁷⁶ Ge	GERDA/ LEGEND	2.0 1021	75 %	1.4 10 ³ / 1.4 10 ⁵
¹⁰⁰ Mo	CUPID-Mo/ CUPID	7.1 10 ¹⁸	91 %	0.65 / 2.7 10 ⁴
¹³⁶ Xe	EXO-200/ nEXO	2.2 10 ²¹	85 %	1.7 10 ³ / 3.7 10 ⁵

Sensitivity projections

Elisabetta Bossio (TUM)

Sensitivity projections

Elisabetta Bossio (TUM)

Exotic pair production

If single production is allowed, pair production is subdominant

Exotic pair production

If single production is allowed, pair production is subdominant

Single production can be forbidden (e.g. Z2 symmetry)

Exotic pair production

If single production is allowed, pair production is subdominant

Single production can be forbidden (e.g. Z2 symmetry)

Effective interaction:

$$\mathscr{L}_{eff} = g_{\chi} \nu \nu \chi \chi$$

Sum of two terms:

$$\frac{d\Gamma}{dT} = \frac{d\Gamma_{\nu\nu}}{dT}\theta(T_0 - T) + \frac{d\Gamma_{\chi\chi}}{dT}\theta(T_0 - T - 2x_{\chi})$$

Elisabetta Bossio (TUM)

Sum of two terms:

$$\frac{d\Gamma}{dT} = \frac{d\Gamma_{\nu\nu}}{dT}\theta(T_0 - T) + \frac{d\Gamma_{\chi\chi}}{dT}\theta(T_0 - T - 2x_{\chi})$$

Decay rate expressed via the NME of

Ο*ν*ββ **decay** [Phys. Rev. Lett. 125, 171801, arXiv:2003.11836]:

$$\frac{d\Gamma_{\chi\chi}}{dT} = \frac{g_{\chi}^2 m_e^2}{8\pi^2 R^2} |\mathcal{M}_{0\nu}|^2 \frac{dG_{NN}^{(0)}}{dT}$$

17

Sum of two terms:

$$\frac{d\Gamma}{dT} = \frac{d\Gamma_{\nu\nu}}{dT} \theta(T_0 - T) + \frac{d\Gamma_{\chi\chi}}{dT} \theta(T_0 - T - 2x_{\chi})$$

Decay rate expressed via the NME of

 $0\nu\beta\beta$ decay [Phys. Rev. Lett. 125, 171801, arXiv:2003.11836]:

Elisabetta Bossio (TUM)

17

Sensitivity projections

Elisabetta Bossio (TUM)

Sensitivity projections

18

Elisabetta Bossio (TUM)

Conclusions

Double-beta decays are powerful tools for investigating BSM physics

- A vast experimental program is ongoing/planned to search for $0\nu\beta\beta$ decay: Majorana neutrinos & Lepton number violation
- Large statistics of $2\nu\beta\beta$ decay events collected by experiments: more BSM physics searches (e.g. new particles, RH currents, neutrino selfinteractions, Lorentz violation...)
- Double-beta decay experiments can improve the current bounds on sterile neutrinos in the mass range 100 keV 2.5 MeV
- They also offer a unique opportunity to test models in which only the pair production of exotic fermions is allowed

Conclusions

Double-beta decays are powerful tools for investigating BSM physics

- A vast experimental program is ongoing/planned to search for $0\nu\beta\beta$ decay: Majorana neutrinos & Lepton number violation
- Large statistics of $2\nu\beta\beta$ decay events collected by experiments: more BSM physics searches (e.g. new particles, RH currents, neutrino selfinteractions, Lorentz violation...)
- Double-beta decay experiments can improve the current bounds on sterile neutrinos in the mass range 100 keV 2.5 MeV
- They also offer a unique opportunity to test models in which only the pair production of exotic fermions is allowed

Thank you for your attention!