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The big unknown in direct detection

* Direct detection with DM-electron scattering key tool for sub-GeV DM

* |ngredients entering the scattering rate:
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Material properties DM-SM coupling

astrophysics: DM phase space distribution

* relies only on simulations

* large uncertainty in interpretation of results

Halo-independent analysis




The trouble with DM-electron scattering

 Halo-independent analysis of DM-nucleon scattering is solved:

Voo v+ P e.g. Fox, Kribs, Tait 1011.1910
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Vinin(£) Gelmini, Huh, Witte, 1707.07019

Velocity-dependent part separates from everything else

 NOT the case for DM-electron scattering

Unknown initial momentum of electron leads to convoluted integral of
velocity v and momentum transfer g Chen, Gelmini, Takhistov, 2105.08101
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Halo-independent formalism for e scattering

Re-formulate problem as fit with velocity distribution as nuisance parameter
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DM velocity distribution
and DM properties

Rate binned in energy

Velocity distribution is infinite dimensional, high-dimensional approximation:
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High-dimensional fit use ADAM optimizer in
analogous to ML training

TensorFlow with log-likelihood
as loss function




Test |: recovering the DM mass

Test of formalism with mock data generated with QEdark
Essig et al., 1509.01598

In this talk: One example, with m, = 10 MeV, heavy mediator and SHM
(other models in paper and backup)

100 Asimov dataset, Model B, 1 kgxy exposure
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Combining elements (here Si and Ge) is crucial
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Perfect joint fit only at correct mass for any velocity distribution




Test ll: recovering the DM velocity

Best-fit velocity distribution

Model B, m, =10 MeV
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Flat directions are under control and yield envelope of
equivalent solutions
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Limits on the DM mass

Use profiled )(2 quantitatively as a test statistic

Poisson draws, Model B, 1 kgXy exposure

Joint fit of Si and Ge excludes range of DM masses for any vel. distr.

Bounds are robust under Poisson fluctuations
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Application to real data

We also have real event rates from SENSEI and EDELWEISS!
SENSEI Collaboration, 2004.11378, EDELWEISS Collaboration, 2003.01046

Joint fit yields > ~ 10° = Rates cannot be explained by DM alone

SENSEI best fit, 4.9 MeV, nFDM=0, 1 gXyr
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Conclusions

@ Large uncertainty in interpretation of DM direct detection experiments from
DM velocity distribution

» Halo-independent analysis

@ Established methods for nuclear scattering not applicable to electron
scattering

@ Can formulate problem as fit and use methods from ML

® Formalism can constrain DM velocity distribution and DM properties without
using velocity distribution as input

@ First application to real data in anticipation of much more data in the future







Mock data

Test of formalism with Mock data generated with QEdark:

model name || m, [MeV] Fpwm halo model
A 50 1 SHM
B 10 1 SHM
C 50 (ame/q)* SHM
D 50 1 stream

Heavy mediator Light mediator
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Test |: recovering the DM mass

)(2 profiled over the DM velocity distribution

100 Asimov dataset, Model A, 1 kgXy exposure 100 Asimov dataset, Model B, 1 kgxy exposure
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» Combining elements (here Si and Ge) is crucial




Test ll: recovering the DM velocity

50 MeV

50 MeV

light mediator

SHM

heavy mediator

SHM

Best-fit velocity distributions

Model A, m, =50 MeV
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Limits on the DM mass

Use profiled )(2 quantitatively as a test statistic

Standard Halo Model Stream
Poisson draws, Model B, 1 kgXxy exposure 60 Poisson draws, Model D, 1 kgXy exposure
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» Joint fit of Si and Ge excludes range of DM masses for any vel. distr.
* Asimov dataset yields good projection

* Bounds improve with exposure
e



