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Thermal dark matter below ~1 GeV

» The existence of dark matter is well-established by cosmological and astrophysics

Thermal and Asymmetric Targets for DM—e Scattering observations
10—35.

* The freeze-out hypothesis has been a key motivating concept in the search for dark matter

10—37.
- Dark matter particle mass is a ~free parameter, but lighter masses require weaker couplings to the visible
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107 * Light dark matter naturally implies a new force carrier mediating the “weaker-than-weak”
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* Accelerator-based production of
dark matter moves the production
to the relativistic regime, where the
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Electron fixed-target kinematics

Inclusive Single e~
Background

« Form,>~2m_, A’ carries most ot the

momentum after the interaction

Event Fraction

» Signal signature is a single low-
momentum electron - large missing
momentum/energy

» Recoil electron receives a transverse 0 { y 3 4
momentum kick ~ \/mA, E. [GeV]
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Hierarchy of backgrounds
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Experimental concept

{ ‘ H ‘ ‘ ‘ Detector technology with fast readout and high
radiation tolerance
o __//—e:» il high momentum resolution, low mass tagger/recoil tracker
T " high energy resolution EM calorimeter (ECal)
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Beam which enables 0(10%¢) electrons to be
individually identified & reconstructed

low-current, high repetition rate beam (10%/year is ~ 1e"/ 3 ns)
S30XL+LESA using idle cycles of LCLS-Il @ SLAC (4/8 GeV )

— existing LCLS
— existing ESA

— S30XL +LESA H




Tracker

Tracker based on successful HPS design

4 By P
Tagger Tracker in 1.5T dipole field to reject off-momentum incoming | // ' "‘P°'°/ \\| |
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Recoil Tracker in fringe field to measure momentum of recoil electron
(including pr), reject tridents and other events with multiple charged
particles emerging from the target
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Electromagnetic Calorimeter

Electromagnetic calorimeter based on CMS HL-LHC Endcap Calorimeter (HGCAL)

40 X0 tungsten-silicon imaging calorimeter with fast shaping and readout, radiation tolerant | /’ 1_53d+ip°,e f *\ | ‘
MIP sensitivity (S/N=10-15), precision shower timing (50 ps) / / \

Sodar  AmME  BIGW  unclr el Calomater
High granularity (100k channels): can exploit both transverse & longitudinal shower shapes to

reject PN events using ML algorithms and handle multiple incoming electrons in a single

LDMX Simulation
integration period
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Hadron Calorimeter

Steel/scintillator calorimeter with WLS fiber/SiPM readout

. .. L
Highly efficient veto (10°) for photonuclear processes that produce neutral hadrons IR ‘
Side HCal rejects wide angle bremsstrahlung and y->p+p- Tagze, Trigg/er T\mn AT (P—— %A
tracker Scintillator  target tracker Calorimeter Calorimeter

Enables synergistic measurements in visible signatures and nuclear processes
relevant for DUNE program

Performance demonstrated in CERN testbeam

4 GeV Muons LDMX 2022
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Missing energy trigger

Trigger based on missing energy as measured in ECal

»

ECal triggering with a missing energy of 2.5 GeV reduces rate from 37 MHz | // 1-5”"””// \\| |

tO O(l kHZ) Tagger Trigger Thin Recoil Electromagnetic H;\dro{:ic
tracker Scintillator  target tracker Calorimeter Calorimeter

Trigger scintillator hodoscope determines number of incoming electrons in
an event, which is needed to determine appropriate total energy
expectation for a given bunch.
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Missing Momentum Search (4 GeV)
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Using signal kinematics in missing momentum 13X ﬁ

Transverse momentum kick in dark brehmsstrahlung, which is a powerful discriminant from
photonuclear and electronuclear backgrounds, is kept in reserve for analysis to this point as a
final handle in the case of higher-than-expected backgrounds

Transverse momentum distribution can be used to constrain the mediator mass in the case of an
observation
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Missing Energy

Electrons which do not interact in the target will impact the calorimeter. These electrons could also experience dark
brehmsstrahlung, resulting in a missing energy signature

Negatives: Recoil electron transverse momentum cannot be measured, recoil shower overlaps location where photonuclear
backgrounds are likely to occur, fewer handles for controlling backgrounds than missing momentum signature

Advantages: More effective luminosity than missing-momentum channel, particularly interesting early in the run of the
experiment

Developed technique for dark brehmsstrahlung physics process for Geant4 using key
kinematic variables from a Madgraph/MadEvent library, allows proper handling
of soft EM deposits before dark brehmsstrahlung
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LDMX Sensitivity (4 GeV)
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Broader Physics Program

The broader LDMX physics program includes sensitivity to a range of other dark matter models in
the invisible mode, searches for visible dark matter decays, as well as measurements of electron-
nuclear scattering which are valuable for the DUNE program
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8 GeV Beam

Nothing hard

10 13

Excluded

< 2 multiplicity

— Thermal targets

LDMX Simulation
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https://arxiv.org/abs/2308.15173
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Prospects and Summary

-
¢
N

The thermal-relic hypothesis is one of the most compelling DM scenarios, and
the broad vicinity of the “normal matter” scale is a good place to be looking -
that why there’s an LDW conference!

LDMX Simulation
Dark Photon

Accelerator based experiments are in a great position to test a wide range of
scenarios for light dark matter - and could reveal much of the underlying dark
sector physics together with direct detection experiments

LDMX offers unprecedented sensitivity to light DM over a wide range of dark
matter and mediator masses.

Dark bremsstrahlung

More generally, the experiment will be able to explore a broad array of sub-
GeV physics, and could also perform photonuclear & electronuclear
measurements useful for planned neutrino experiments.
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= LDMX Phase2
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A beamline appropriate for LDMX is under construction at SLAC, and several
systems have been demonstrated in recent testbeam studies
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Construction start has been slowed by funding challenges from very large
current projects, but active work is underway for a comprehensive design
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Additional Material
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Event Display (Background)

LDMX Simulation
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Hadron Calorimeter 4 GeV vs 8 GeV

LDMX Simulation
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