Probing Dark Matter-Proton Interactions with Cosmic Reservoirs

21 September 2023, Light Dark World, Karlsruhe

Marco Chianese

Based on Ambrosone, MC, Fiorillo, Marinelli, Miele, PRL 131 (2023) 11 [2210.05685]

Motivation

Current direct detection searches are unable to probe light dark matter particles.

Poor sensitivity to low nuclear recoil energies

Recent improvements: talk by Angelo Esposito

New idea: the same interaction might occur with cosmic-rays during their propagation!

DM interactions with cosmic-rays

They have two main effects:

1. Production of a BDM flux

 Up-scatterings with CR-protons Talk by Torsten Bringmann

♦ Up-scatterings with CR-electrons Talk by Filippo Sala

Marco Chianese | UniNA & INFN

See also

Agashe+, **JCAP 10 (2014)** Giudice+, **PLB 780 (2018)** SK coll., **PRL 120 (2018)** Bringmann+, **PRL 122 (2019)** Ema+, PRL 122 (2019) Cappiello+, **PRD 100 (2019)** Alvey+, PRL 123 (2019) Guo+, PRD 102 (2020) Bondarenko+, JHEP 03 (2020) Alvey+, JHEP 01 (2023)

Ema+, SciPost Phys. 10 (2021) Berger+, PRD 103 (2021) Bell+, PRD 104 (2021) PROSPECT coll., **PRD 104 (2021)** Wang+, **PRL 128 (2022)** Granelli+, JCAP 07 (2022) PandaX-II coll., PRL 128 (2022) CDEX coll., **PRD 106 (2022)**

2

DM interactions with cosmic-rays

They have two main effects:

1. Production of a BDM flux

 Up-scatterings with CR-protons Talk by Torsten Bringmann

 Up-scatterings with CR-electrons Talk by Filippo Sala

Marco Chianese | UniNA & INFN

2. Reverse direct detection (i.e. modification of the CR spectrum)

✦ Milky Way

Cappiello+, **PRD 99 (2019)**

Starburst galaxies (in this talk!)

See also

Agashe+, **JCAP 10 (2014)** Giudice+, **PLB 780 (2018)** SK coll., **PRL 120 (2018)** Bringmann+, **PRL 122 (2019)** Ema+, PRL 122 (2019) Cappiello+, **PRD 100 (2019)** Alvey+, PRL 123 (2019) Guo+, PRD 102 (2020) Bondarenko+, JHEP 03 (2020) Alvey+, JHEP 01 (2023)

Ema+, SciPost Phys. 10 (2021) Berger+, PRD 103 (2021) Bell+, PRD 104 (2021) PROSPECT coll., PRD 104 (2021) Wang+, PRL 128 (2022) Granelli+, JCAP 07 (2022) PandaX-II coll., PRL 128 (2022) CDEX coll., PRD 106 (2022)

Starburst galaxies (SBGs)

The Starburst Galaxy M82

Marco Chianese | UniNA & INFN

Properties of SBGs

- ◆ Galaxies with high star-formation rate (~100 M_☉/yr, to compare with ~3 M_{\odot} /yr in the Milky Way)
- Dense interstellar gas ($n_{ISM} > 100 \text{ cm}^{-3}$)
- ◆ Cosmic reservoirs: protons confined for about ~10⁵ yr
- ✦ Hadronic production:

Interstellar gas as the target

$$p + p \to \pi^+ \pi^- \pi^0 \dots$$

- Injected CRs with power-law spectrum
- ◆ Sources of high-energy **neutrinos** and **gamma-rays**:

$$\pi^{\pm} \to e^{\pm} \,\nu_e \,\nu_\mu \,\overline{\nu}_\mu \qquad \qquad \pi^0 \to \gamma\gamma$$

Ambrosone+, MNRAS 503 (2021), ApJL 919 (2021), MNRAS 515 (2022)

Current gamma-ray observations

We focus on M82 and NGC253 galaxies which have more high-energy data!

CR protons propagation

The proton distribution is dictated by the diffusion-loss differential equation:

$$\frac{\mathrm{d}f_{\mathrm{CR}}(E)}{\mathrm{d}t} - \nabla \left[D(E) \nabla f_{\mathrm{CR}}(E) + \mathbf{v}_{\mathrm{adv}} f_{\mathrm{CR}}(E) \right] + \frac{\mathrm{d}}{\mathrm{d}E} \left[\frac{\mathrm{d}E}{\mathrm{d}t} f_{\mathrm{CR}}(E) \right] = Q_{\mathrm{CR}}(E)$$

Diffusion

Good approximation inside the SBG core

Marco Chianese | UniNA & INFN

Advection

Energy losses

Source term

Standard losses: ionization, Coulomb interactions, and proton-proton collisions

M82 emission

Smallest timescale Dominant process

Marco Chianese | UniNA & INFN

M82 emission

The SBG model fits very well current gamma-ray data!

Marco Chianese | UniNA & INFN

• Star-formation rate $\dot{M}_* = 4.5 M_{\odot} \,\mathrm{yr}^{-1}$

SBGs as DM laboratories

We cannot directly probe the CR spectrum inside the SBGs...but we observe γ -rays!

DM halo

DM density inside the SBG

Marine and the second s

Inelastic timescale:

Elastic timescale:

M82 galaxy

$$\tau_{\chi p}^{\text{inel}} = \left(\kappa \sigma_{\text{inel}} \frac{\rho_{\chi}}{m_{\chi}}\right)$$

Marco Chianese | UniNA & INFN

 $\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{rm}} = \frac{\rho_{\chi}}{m_{\chi}} \int_{0}^{T_{\chi}} \mathrm{d}T_{\chi} T_{\chi} \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}T_{\chi}}$

Elastic cross-section

Rescaling vN cross-section

DM halo density profile

Marco Chianese | UniNA & INFN

Large uncertainty on the DM density inside the SBG core

✦ Parameters from cosmological simulations

$$c_{200} = r_{200}/r_s$$
 $M_{200} = \int_0^{r_{200}} \rho_{\chi}(r) \,\mathrm{d}V$

concentration

 \blacklozenge However, marginal effects on the γ -ray emission

⁴
$$\Phi_{\gamma} \propto \int \frac{Q_p(p,r) \tau_{\text{loss}}^{\chi p}(r)}{V} \, \mathrm{d}V \propto \int \frac{\rho_{\chi}^{-1}(r)}{V} \, \mathrm{d}V$$

Average inside the SBN 🖌

Effects of CR-DM scatterings

Effects of CR-DM scatterings

Effects of CR-DM scatterings

Suppression from proton form factor at

$$E_{\rm dip}^p = m_p^2 / (2m_\chi) \qquad E_{\rm dip}^\gamma \simeq 0.1 E_{\rm dip}^p$$

Distortions of Milky-Way Cosmic-Rays

Cappiello+, **PRD 99 (2019)**

✦ Galactic CR-upscattering DM constraints

Bondarenko+, JHEP 03 (2020)

- Distortions of Milky-Way Cosmic-Rays Cappiello+, PRD 99 (2019)
- Galactic CR-upscattering DM constraints
 Bondarenko+, JHEP 03 (2020)
- ◆ Boosted DM from blazar jets, assuming DM spikes (high density) around the black holes
 → large uncertainties!

Wang+ **PRL 128 (2022)**, Granelli+ J**CAP 07 (2022)**

- Distortions of Milky-Way Cosmic-Rays
 Cappiello+, PRD 99 (2019)
- Galactic CR-upscattering DM constraints
 Bondarenko+, JHEP 03 (2020)
- ◆ Boosted DM from blazar jets, assuming DM spikes (high density) around the black holes
 → large uncertainties!

Wang+ **PRL 128 (2022)**, Granelli+ J**CAP 07 (2022)**

OUR CONSTRAINTS FROM SBG (5 σ)

♦ M82 and NGC253 with current and future data

Ambrosone, MC, Fiorillo, Marinelli, Miele, PRL 131 (2023)

Dependence on DM density

The constraints are quite robust against the uncertainty on the DM profile!

11

Forecast with CTA data

Conclusions

- and in general new physics
- complementary constraints on DM-proton cross-section
- the cosmic-ray transport inside SBGs

Marco Chianese | UniNA & INFN

♦ New methodology employing starburst galaxies' observations to probe dark matter

 \blacklozenge Current γ -ray data of M82 and NGC 253 sources put strong and highly

◆ Stay tuned: upcoming gamma-ray telescopes will give us a better understanding of

Thanks for listening!

13

NGC 253

Contamination of heavier nuclei (Helium)

Marco Chianese | UniNA & INFN

We explore different
 CR composition inside
 the SBG core

 Slight modification of spectral distortion

 The limits improve by less than an order of magnitude

Modeling SBG emission

In the calorimeter scenario, three main parameters:

- ✦ Cut-off energy
- ✦ Spectral index

Rate of SuperNovae explosions

parameter	value	parameter	value
$p_{p,\max}$	10^2 PeV	$\mathcal{R}_{\mathrm{SN}}$	$0.06 \ yr^{-1}$
α	4.2	В	$200\;\mu{\rm G}$
R	0.25 kpc	$n_{\rm ISM}$	$100 {\rm ~cm^{-3}}$
D_L	3.9 Mpc	$v_{\rm wind}$	$700 \mathrm{~km/s}$
ξcr	0.1	$U_{\rm rad}$	2500 eV/cm^{-1}

Peretti+, MNRAS 487 (2019), MNRAS 493 (2020)

Bayesian analysis

Source **Uniform Prior** Most Likely Values М́* (\dot{M}_*, Γ) M82 3.0–30 (4.5, 2.30)NGC 253 1.4–17 (3.3, 2.30)60–740 ARP 220 (740, 2.66)NGC 4945 0.35-4.15 (4.15, 2.30)NGC 1068 5–93 (16, 2.52)NGC 2146 3–57 (15, 2.50)ARP 299 28–333 (28, 2.15)M31 0.09-0.90 (0.34, 2.40)M33 0.09-0.90 (0.44, 2.76)NGC 3424 0.4–5.4 (5.4, 2.22)NGC 2403 0.1 - 1.2(0.75, 2.12)SMC 0.008-0.090 (0.038, 2.14)Circinus Galaxy 0.1-8.1 (6.6, 2.32)

Note. The columns report the source name, the SFR prior, the most likely values of the two parameters, the 68% maximum posterior density credible intervals of the marginal distributions, and the reduced chi-squared values considered as an estimate of the goodness of the fit. The star formation rate \dot{M}_* is in units of M_{\odot} yr⁻¹.

This allows us to predict the neutrino and VHE gamma-rays emission from these sources!

68% Credible Intervals	
Γ	
[2.27, 2.33]	1.24
[2.28, 2.32]	1.32
[2.51, 2.68]	1.52
[2.23, 2.32]	1.52
[2.45, 2.65]	0.65
[2.44, 2.88]	0.50
$[1.40, 1.90] \cup [2.77, 3.00]$	0.18
[2.29, 2.61]	0.52
[2.57, 2.96]	0.44
[1.92, 2.67]	1.63
[1.92, 2.36]	0.38
[2.13, 2.16]	1.90
[2.15, 2.45]	0.92
	$\frac{68\% \text{ Credible Intervals}}{\Gamma}$ [2.27, 2.33] [2.28, 2.32] [2.28, 2.32] [2.51, 2.68] [2.23, 2.32] [2.45, 2.65] [2.44, 2.88] [1.40, 1.90] \cup [2.77, 3.00] [2.29, 2.61] [2.57, 2.96] [1.92, 2.67] [1.92, 2.36] [2.13, 2.16] [2.15, 2.45]

Results of the Likelihood Analysis of Current Gamma-Ray Data

- 1.32
- 1.52 1.52
- 0.65 0.50
- 0.18 0.52
- 0.44 1.63
- 0.38 1.90
- 0.92

Point-like forecast

