

Foto: H. Zell, CC BY-SA, Wikimedia Commons

Light vector bosons and the weak mixing angle in the light of new reactor-based CEvNS experiments

Manfred Lindner, <u>Thomas Rink</u> and Manibrata Sen

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg

Light Dark World 2023 Karlsruhe 19 to 21 September 2023

Coherent elastic neutrino-nucleus scattering (CEvNS)

CEvNS chronology:

- Daniel Freedman (1974): weak (SM) NC, flavor-blind, threshold-free!
- First detection with $\pi\text{-}\mathsf{DAR}\ \nu\text{'s:}$ COHERENT CsI (2017) & LAr (2021)
- Reactor experiments (2019 ...): CONNIE (Si), CONUS (Ge), NCC-1701 (Ge), vGEN (Ge)
- Additional running and future experiments: CCM (Ar), Miver (Ge/Si), NEON (Nal[TI]), v-cleus (CaWO₄, Al₂O₃), RED100 (Xe), Ricochet (Ge/Zn), Texono (Ge), CONUS+ (Ge)

The Channel:

• Coherence = enhancement $\sim N^2$

Upper limit on neutrino energy:

$$E_{\nu} \leq \frac{1}{2R_A} \approx \frac{197}{2.5\sqrt[3]{A}} [\text{MeV}]$$

Observable = nuclear recoil energy T_A

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_A} = \frac{G_F^2 m_A}{4\pi} \left[(1 - 4\sin^2\theta_W) Z - N \right]^2 \left(1 - \frac{m_A T_A}{2E_\nu^2} \right) F^2(T_A)$$

$$\rightarrow \text{ detector material} \qquad \rightarrow \text{ energy threshold / neutrino source}$$

- Very low energy threshold needed:
 - T_A~N⁻¹
 - Quenching: $T_A \rightarrow$ "detectable" energy

T. Rink

LDW 2023 Karlsruhe

nuclear recoil T.

Brand-new results of the CONUS experiment!

Reactor: Brokdorf nuclear power plant

- @17 m to 3.9 GW_{th}: inside reactor building!
- Neutrino flux: 2.3 · 10¹³/cm²/s
- Reactor information (fuel composition, thermal power) + data-driven reactor spectra

Background & shield [Bonet et al., 10.1140/epjc/s10052-023-11240-4, 2021]

- Overburden: 10-45 m w.e.
- Active and passive components: bkg reduction x10³-10⁴
- Critical reactor-correlated bkg under control!
- Background level O(10)/keV/d/kg

New (and last) RUN-5 data sets:

Detectors:

[Bonet et al., 10.1140/epic/s10052-021-09038-3, 2021]

- HPGe PPC: 4*1ka
- E^{thr}~300eV → 210 eV
- Low Bkg design
- Electric cryocooling
- New DAQ: Pulse shape discrimination

CP5-plus

[Bonet et al., 10.1007/JHEP05(2022)085, 2022]

Brand-new results of the CONUS experiment!

Reactor: Brokdorf nuclear power plant

- @17 m to 3.9 GW_{th}: inside reactor building!
- Neutrino flux: 2.3 · 10¹³/cm²/s
- Reactor information (fuel composition, thermal power) + data-driven reactor spectra

Background & shield

T. Rink

[Bonet et al., 10.1140/epjc/s10052-023-11240-4, 2021]

- Overburden: 10-45 m w.e.
- Active and passive components: bkg reduction $x10^3-10^4$
- Critical reactor-correlated bkg under control!
- Background level O(10)/keV/d/kg

Detectors:

[Bonet et al., 10.1140/epjc/s10052-021-09038-3, 2021]

- HPGe PPC: 4*1kg
- E^{thr}~300eV → **210 eV**
- Low Bkg design
- Electric cryocooling
- New DAQ: Pulse shape discrimination

[Bonet et al., 10.1007/JHEP05(2022)085, 2022]

New (and last) RUN-5 data sets: ON~458 kg·d, OFF~293 kg·d

- CEvNS events < 163 events (90% C.L.)
- Factor <2 above SM prediction
- More than one order of magnitude improvement compared to previous analysis (2020)!
- Strongest limit on CEvNS from reactors!

Upcoming publication!

LDW 2023 Karlsruhe

4

New experiment at new site: CONUS+

Aim: First CEvNS detection @ reactor-site!

- Installation in Leibstadt (Switzerland) this summer \rightarrow @ 20 m distance to the 3.5 GW_{th} reactor core
- Refurbishment of existing COvUS Ge detectors
 → energy threshold < 200 eV!
- Increased muon rejection efficiency via additional plastic scintillator layer
- Full background characterization at experimental site already performed
 → array of Bonner spheres + liquid scintillator cell

Future: Results from / upgrades of NCC-1701 (Ge), vGEN (Ge) and Texono (Ge)?

T. Rink

The weak mixing angle at low energy

• **SM:** SU(2)_LxU(1)_Y + Higgs + renormalizability:

 $\sin^2 \theta_W^0 = e_0^2 / g_0^2 = 1 - m_W^{0^2} / m_Z^{0^2}$

- \rightarrow respected by renorm. parameters (finite corrections)
- test SM @ quantum level / probe BSM physics
 → precision of O(±0.1%) desired!
- At low energy $\gamma\text{-}Z$ interference introduces small degree of parity violation
 - \rightarrow current experimental precision O(±1%)
- Best precision achieved at Z pole: O(±0.1%)
- BUT low-Q² measurements probe kinematic regions where Z pole measurements are insensitive to NP
 - → weakly-coupled light vector boson:

dark parity violation / dark Z'

Q [GeV]

T. Rink

Future Weinberg angle sensitivity

$\Delta \chi^2$ contours for different mass and threshold configurations:

- EveS alone is generally not competitive
- Combined analysis dominated by contributions below $1 \text{keV} \rightarrow \text{CEvNS}$ only
- Sensitivity limited by systematics: ~5% relative uncertainty

"Realistic" improvement: ~3-8% relative

Future light vector sensitivity

Simplified mediator model \rightarrow contribution to CEvNS / EveS

 $\mathcal{L}_{Z'} = Z'_{\mu} \left(g^{\nu V}_{Z'} \bar{\nu}_L \gamma^{\mu} \nu_L + g^{e V}_{Z'} \bar{e} \gamma^{\mu} e + g^{q V}_{Z'} \bar{q} \gamma^{\mu} q \right) + \frac{1}{2} m^2_{Z'} Z'_{\mu} Z'^{\mu}$

- Assume universal coupling to quarks / electron / neutrinos: $(m_{Z'}, g_{Z'})$
- EveS more sensitive to lower mediator masses: m_e vs. m_{Ge}
- CONUS benchmark points (keV, GeV): EveS (5.2·10⁻⁷, 1.1·10⁻²); CEvNS (2.7·10⁻⁵, 1.8·10⁻³)

"Realistic" improvements: CEvNS~7-29%, EveS~3-12%

Reactor neutrinos for low masses $\leftrightarrow \pi$ -DAR neutrinos for higher masses

T. Rink

LDW 2023 Karlsruhe

[Cerdeño et al., 10.1007/JHEP05(2016)118, 2016]

[Cadeddu et al., 10.1007/JHEP01(2021)116, 2021]

[Bonet et al., 10.1007/JHEP05(2022)085, 2022]

Future light vector sensitivity

THE benchmark (mediator) model \rightarrow U(1)_{B-L}

 $\mathcal{L}_{Z'} = Z'_{\mu} \left(g_{Z'}^{\nu V} \bar{\nu}_L \gamma^{\mu} \nu_L + g_{Z'}^{e V} \bar{e} \gamma^{\mu} e + g_{Z'}^{q V} \bar{q} \gamma^{\mu} q \right) + \frac{1}{2} m_{Z'}^2 Z'_{\mu} Z'^{\mu}$

- Assume gauged B-L charge: $(m_{Z'}, g_{Z'})$
- EveS more sensitive to lower mediator masses: m_e vs. m_{Ge}
- CONUS benchmark points (keV, GeV): EveS (5.2·10⁻⁷, 1.1·10⁻²); CEvNS (3.3·10⁻⁵, 2.3·10⁻³)

"Realistic" improvements: CEvNS~12-35%, EveS~2-10%

Reactor neutrinos for low masses $\leftrightarrow \pi$ -DAR neutrinos for higher masses

T. Rink

LDW 2023 Karlsruhe

 $\frac{d\sigma}{dT} \propto \left[Q_{SM} - \frac{g_{Z'}^2}{\sqrt{2}G_F} \frac{Z+N}{|q|^2 + m_{Z'}^2} \right]^2$

[Cadeddu et al., 10.1007/IHEP01(2021)116, 2021]

Opportunities for CEvNS experiments

SM investigations with enhanced precision:

- Nuclear form factors: Model-independent extraction of neutron density distributions
 → Beam-reactor complementarity
- Measuring reactor antineutrino spectrum: CEvNS sensitive to all flavors of high-E part where uncertainty is largest

BSM investigations:

- Light sterile neutrinos: Use CEvNS for ν flux measurements
- New fermion searches: Test further ν interactions
 → ν mass, DM, ...
- **Probing portals:** ALPs, dark photons, etc.

q

[Aristizabal Sierra et al., 10.1007/JHEP03(2021)294, 2021]

q

[Berryman, 10.1103/PhysRevD.100.023540, 2019]

LDW 2023 Karlsruhe

T. Rink

[Patton et al., 10.1103/PhysRevC.86.024612, 2012]

Conclusion

CEvNS opens new path to high-statistics neutrino physics

- \rightarrow beams and reactors go hand in hand!
- \rightarrow full spectrum of modern detection technologies
- \rightarrow "car-size" neutrino detectors!

• Sensitivity for the next-gen. of Ge-based reactor experiments

- → Weinberg angle:
 - relative uncertainty $\leq 10\%$
 - systematics become crucial!
- \rightarrow Light vector bosons (universal coupling & B-L):
 - probing the next order of magnitude
 - improved threshold critical for CEvNS-dominated limit regions

CONUS RUN-5 SM results to be published soon → BSM analyses are coming!

Next-generation experiments (π -DAR, reactors & DM DD!) = huge playground for phenomenology

(Neutrino magnetic moment, neutrino charge radius, vector NSI, tensor NSI, light scalars, light vectors, sterile neutrinos, dark matter, weak mixing angle, nuclear form factors, neutrino-electron-scattering, supernova neutrinos, antineutrino reactor spectra, neutrino floor, etc.)

Thank You!

Backup

Assume a CONUS-like experiment

Reactor: commercial nuclear power plant

- Experimental site \sim 20 m to 3.5 GW_{th}
- ν flux: ~1.5 * 10¹³/cm²/s (3% uncertainty)
- Typical PWR fuel composition: 56.1% U235, 7.6% U238, 30.7% Pu239, 5.6% Pu241

Background

- No critical reactor-correlated bkg!
- Background levels:
 - 10 cnts/keV/d/kg for $E_{\text{ion}} \leq 1 \text{keV}$
 - 0.5 cnts/keV/d/kg for $E_{ion} > 1 keV$

Detectors:

• Data collection: $t_{OFF} = 0.5 * t_{ON}$:

R1 - $exp_{ON} = 5 kg^*yr$ **R2** - $exp_{ON} = 50 kg^*yr$

[Bonhomme et al., 10.1140/epjc/s10052-022-10768-1, 2022]

- CONUS HPGe detectors with improved trigger efficiency: $E_{thr} \sim 3 \cdot FWHM_{pulser}$
- Quenching according to Lindhard model (1% uncertainty)

Detector	Threshold E_{thr}
D1 (conservative)	180 eV
D2 (expected)	150 eV
D3 (optimistic)	100 eV

CEvNS observations and constraints

Observations:

T. Rink

Outlook: Future Ge detectors at reactor sites

Progress for kg-size Ge detectors @ reactor sites

Experimental perspective (single diode):

- Improve pulser width $FWHM_{pulser}$ \rightarrow improves $E_{thr} \sim 3 \cdot FWHM_{pulser}$!
- Improve trigger efficiency

 → record more events in critical region!
- Background and environmental stability at experimental site

 \rightarrow increases exposure

Theoretical perspective (whole set-up):

- Energy threshold and exposure are key for a strong CEvNS signal / BSM reach
- Trade-off between reactor flux and background
- Incorporate major uncertainties in SM and BSM studies!

HPPC Ge detectors offer a scalable technology also in critical environments

→ energy threshold and trigger efficiency are crucial! exposure via multiple diodes?

 \rightarrow quenching (description) strongly affects CEvNS prediction

Reactor antineutrino spectrum: data-driven approach

[Estienne et al., 10.1103/PhysRevLett.123.022502, 2019]

1) Low energy region E<1.8 MeV:

Summation spectra of Estienne et al. (2019)

2) Intermediate energy 1.8 MeV≤E<7 MeV

Daya Bay (2021):

- unfolded IBD spectra of U235, (Pu239+ Pu241), total
- method to construct data-based predictions

$$\boldsymbol{S}_{\text{pred}} = \boldsymbol{R} \cdot \begin{pmatrix} \boldsymbol{S}_{\text{total}} \\ \boldsymbol{S}_{235} \\ \boldsymbol{S}_{\text{combo}} \\ \boldsymbol{S}_{238} \\ \boldsymbol{S}_{241} \end{pmatrix} \xrightarrow{\boldsymbol{R}} = \begin{pmatrix} I_{25} \mid \Delta f_{235} I_{25} \mid \Delta f_{239} I_{25} \mid \Delta f_{238} I_{25} \mid (\Delta f_{241} - 0.183 \times \Delta f_{239}) I_{25} \\ \text{Difference in fission fractions} \\ \xrightarrow{\boldsymbol{M}_{\text{ueller}}} & \text{Mueller} \\ \stackrel{\text{Extend with bin-to-bin} \\ \text{uncorrelated uncertainties:} \\ 10\% \text{ Huber, 15\% Mueller} \\ \end{pmatrix}$$

3) High energy E≥7 MeV:

Daya Bay measurement of combined high energy spectrum (2022)

 \rightarrow Application of Daya Bay data-based method with Estienne et al. spectra

Spectrum also used in current CONUS analysis!

[An et al., 10.1103/PhysRevLett.129.041801, 2022]

Prompt energy MeV

T. Rink

Sensitivity determination

(Binned log-) Likelihood function:

- ON and OFF data are fitted together: $\log \mathcal{L} = \log \mathcal{L}_{ON} + \log \mathcal{L}_{OFF} + \text{pull term}$ with $\log \mathcal{L}_{ON}(\sin^2 \theta_W, g_{Z'}, m_{Z'}; b_{CE\nu NS}, b_{E\nu eS}, \Phi_{\bar{\nu}}, k)$ $\log \mathcal{L}_{OFF}(b_{CE\nu NS}, b_{E\nu eS})$
- Parameter list:
 - Weinberg angle $\sin^2 \theta_W$
 - Z' model parameters $g_{Z'}, m_{Z'}$
 - bkg normalizations $\mathit{b}_{\mathrm{CE}\nu\mathrm{NS}},\ \mathit{b}_{\mathrm{E}\nu\mathrm{eS}}$
 - reactor neutrino flux (~3%) $\, \Phi_{\bar{\nu}}$
 - parameter of Lindhard model (~1%) k
- profile LH ratio for limits + χ^2 -distribution of test statistic
- Sensitivity estimates via two methods:
 - Asimov data set
 - MC sampling + median average of limits

Sensitivity to the Weinberg angle CEvNS - E_{ion} < 1keV

Sensitivity to a light vector boson: $CEvNS - E_{ion} < 1keV$ $EveS - E_{ion} < 100kev$

T. Rink

Experimental requirements at reactor site

Goal: Detecting CEvNS with high accuracy!

100 200 300 400 500 600 700 800 9001000

E [eV]

T. Rink

1

LDW 2023 Karlsruhe

 10^{-6}

0

200

400

Recoil energy [eVee]

1000

[Lindner, Maneschg, TR, 2016]

800

600

Impact of quenching at low energy

Quenching according to mod. Lindhard model:

T. Rink

Two complementary approaches

π -decay-at-rest neutrinos:

- Pulsed GeV-proton beam hitting heavy target \rightarrow multiple v flavors
- Time correlation of events \rightarrow background suppression x(10³-10⁴)
- Higher v energies
 - \rightarrow larger cross section, but reduced coherence

→ COHERENT, CCM, "CEVNS@ESS"...

Reactor antineutrinos:

- β decays in nuclear reaction chains \rightarrow only $\overline{\nu}_{e}$
- Strongest artificial v source on earth: $\sim 10^{20} \ \overline{v}$'s/GW/s
- v energies up to 10 MeV \rightarrow coherent regime!
- Close to reactor core: no lab conditions!
 → no cryogenic liquids, no remote control

→ CONNIE, CONUS, NCC-1701, ν GEN ...

Beam-reactor complementarity:

CEvNS at reactor site as high statistic baseline for multi-target and multi-flavored beam investigations!

T. Rink

CEvNS with different sources and targets

Element	N	r_A [fm]	E_{ν}^{max} [MeV]	$T_A^{\rm max}$ [keV]
Na	12	3.6	27.7	71.5
Si	14	3.8	25.9	51.3
Ar	22	4.4	23.1	28.5
Ge	38/40/42	5.2	18.9	10.5
Ι	74	6.3	15.7	4.16
Xe	75/77/78	6.4	15.5	3.93
\mathbf{Cs}	78	6.4	15.4	3.85

[TR, 10.11588/heidok.00031274, 2022]

Neutrino source	Target	$T_A^{\rm max}$ [keV]	$E(QF \in \{0.1, 0.15, 0.2\})$ [keV]
Nuclear reactor	Na	9.33	$0.93 \ / \ 1.40 \ / \ 1.87$
$(10{ m MeV})$	Si	7.64	$0.76 \;/\; 1.15 \;/\; 1.53$
	Ar	5.37	$0.54 \;/\; 0.81 \;/\; 1.07$
	Ge	2.96	$0.30 \ / \ 0.44 \ / \ 0.59$
	Ι	1.69	$0.17 \;/\; 0.25 \;/\; 0.34$
	Xe	1.64	$0.16 \ / \ 0.25 \ / \ 0.33$
	\mathbf{Cs}	1.62	$0.16 \;/\; 0.24 \;/\; 0.32$
π -DAR source	Na	232.4	$23.2 \ / \ 34.9 \ / \ 46.5$
$(50 \mathrm{MeV})$	Si	190.4	$19.0 \; / \; 28.6 \; / \; 38.1$
	Ar	134.0	$13.4 \; / \; 20.1 \; / \; 26.8$
	Ge	73.8	$7.38 \ / \ 11.1 \ / \ 14.8$
	Ι	42.3	$4.23 \ / \ 6.34 \ / \ 8.45$
	Xe	40.9	$4.09 \ / \ 6.13 \ / \ 8.17$
	\mathbf{Cs}	40.4	$4.04 \;/\; 6.03 \;/\; 8.07$

T. Rink