Bounds on Axions From Obscured Magnetars

Dibya S. Chattopadhyay

In collaboration with Basudeb Dasgupta, Amol Dighe and Mayank Narang

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Light Dark World (LDW), KIT

19 Sep, 2023

Magnetars

Dibya S. Chattopadhyay

In collaboration with Basudeb Dasgupta, Amol Dighe and Mayank Narang

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Light Dark World (LDW), KIT

19 Sep, 2023

Recap...

Dibya S. Chattopadhyay, TIFR

The Light Shining through the Wall (LSW) technique of looking for ALPs

• Lab-based experiments: OSQAR, CROWS, ALPS, ALPS - II (upcoming...)

- "laboratory".
- Obscured Magnetars and an excellent candidated

Dibya S. Chattopadhyay, TIFR

• Applying the **LSW technique in astrophysics** by finding a suitable

Obtaining the constraint on g_{av}

- The fraction of photons that are finally observed must always be larger than the fraction of photons that may escape through the $\gamma \rightarrow a \rightarrow \gamma$ process.
- Calculating $P(\gamma \to a \to \gamma)$ dependence on $g_{a\gamma}$ allows us to **constrain** the **ALP-photon coupling.**
- The "escape probability" is given by

 $P_{sur} \gtrsim P_{MN} P_{ISM}$

Dibya S. Chattopadhyay, TIFR

 $P(\gamma \to a \to \gamma) = P_{MN}(\gamma \to a) \times P_{ISM}(a \to \gamma)$

A magnetar candidate for the LSW technique: PSR J1622-4950

$$P_{\rm sur}(E, E + \delta E) = \frac{F_{\rm obs}(E, E + \delta E)}{F_0(E, E + \delta E)}$$

• The ratio between the observed flux vs. the "expected" flux.

$$P_{sur} \approx (0.25 - 4.58) \times 10^{-4}$$

Dibya S. Chattopadhyay, TIFR

I. *P_{sur}* The fraction of photons that survive...

 $\delta E)$ $\overline{E})$

 $F_{\rm obs}({\rm bin}) \approx (0.68 - 2.01) \times 10^{-18} \,{\rm erg} \,{\rm cm}^{-2} \,{\rm s}^{-1}$ $F_0(\text{bin}) = (0.44 - 2.72) \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$ (0.71 – 0.98) keV

$F_{ m obs}(m total)$	$F_0(ext{total})$	kT	N_H
$({\rm erg}\ {\rm cm}^{-2}\ {\rm s}^{-1})$	$({\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1})$	(keV)	$(10^{22}{ m cm}^{-1})$
$\boxed{3.0^{+0.8}_{-0.6}\times10^{-14}}$	$11^{+9}_{-4} \times 10^{-14}$	0.5 ± 0.1	$5.4^{+1.6}_{-1.4}$

Anderson et al., MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622–4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT

- The conversion probability in the ISM will be averaged out.
- We take:

$$n_{ISM} \approx 2 \times 10^{-2} \text{ cm}^{-3}$$

$$B_{ISM} \approx 2 \times 10^{-6}$$
 gauss

Dibya S. Chattopadhyay, TIFR

III. *P_{MN}* Conversion near the magnetar

Resonance in the Magnetar Neighbourhood

$$m_{eff}^2 = \frac{4 \pi \alpha n_e}{m_e} - \frac{88 \alpha^2 \omega_{\gamma}^2}{135 m_e^4} \frac{B^2}{2}$$

$$n_e \approx n_0 \left(\frac{r}{r_0}\right)^{-3} \qquad B \approx B_0 \left(\frac{r}{r_0}\right)$$

- Resonance at $m_{eff}^2 = m_a^2$
- Fluctuations may lead to multiple pairs of resonances.

Large uncertainties in charge density estimates

Dibya S. Chattopadhyay, TIFR

III. *P_{MN}* Conversion near the magnetar...

• We use conservative estimates for $P_{MN} \equiv P_{tot}$

$$P_{tot} \approx \frac{1}{3} \left(1 - e^{-\frac{3\pi}{4}\Gamma_{tot}} \right)$$

$$\Gamma_{tot} = \frac{2g_{a\gamma}^2 \omega}{m_a^2} \sum_{i}^{n_r} B_{T,i}^2 \mathcal{R}_i$$

$$\Re_i \equiv \left| \frac{d \ln m_{eff}^2}{dl} \right|_{l=l_i}^{-1}$$

$$10^{-1}$$

$$m_a^2 = 10^{-10} \text{ GeV}^{-1}$$

$$10^{-4}$$

$$\omega_{\gamma} = 0.83 \text{ keV}$$

$$m_a = 10^{-16} \text{ eV}$$

$$10^{12}$$

$$10^{14}$$

$$n_0 (in)$$

Dibya S. Chattopadhyay, TIFR

Results

- Complementary to existing astrophysical bounds.
- Better than all current lab-based LSW bounds.
- Competitive even with **ALPS-II** projections for $m_a \lesssim 10^{-12} \, \text{eV}.$

d.s.chattopadhyay@theory.tifr.res.in

Hydra A

M87

Diffuse SNe

OSOAR

Super star clusters

H1821+643

CAST

Take home message

- The idea: LSW + astrophysical systems
- The candidate: obscured magnetars
- The result: $g_{a\gamma} \lesssim (10^{P_{a} + 10^{-10}} 10^{-10})^{1-P_{sm}} \text{GeV}^{-1}$ for low mass ALPs_a($m_a \lesssim 10^{-12}_{a} \text{eV}$).

Dibya S. Chattopadhyay, TIFR

Obscured Magnetars

