state device

Oleksiy Boyarsky, Yevheniia Cheipesh, Oleksiy Mikulenko, Zhiyang Tan, Vadim Cheianov

Looking into the early Universe with a solid-

Quantum measurement device with quantum impurities for particle physics and physics of the early universe

How to probe the early Universe? $C\nu B$ and CMB

- **Gamov:** Early Universe is radiation dominated. $\rho_{\rm rad}/\rho_{\rm matter} \sim 10^{10}$
- For cosmology, any relativistic particle is "radiation" !
- In fact, early Universe has equal populations of ν/γ .
- As Universe expands, ν/γ decouple, relic backgrounds (CMB /CvB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are **411 relic photons** and **339 relic neutrinos** in every cm³!
- The " ν **freezout**" is much earlier than photons
- CvB: one of the few **yet untested predictions of the SM**
- **Detecting CvB is a strategic goal for fundamental** physics. [Weinberg, 1962]

How to probe the early Universe? $C\nu B$ and CMB

- **Gamov:** Early Universe is radiation dominated. $\rho_{\rm rad}/\rho_{\rm matter} \sim 10^{10}$
- For cosmology, any relativistic particle is "radiation" !
- In fact, early Universe has equal populations of ν/γ .
- As Universe expands, ν/γ decouple, relic backgrounds (CMB /CvB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are **411 relic photons** and **339 relic neutrinos** in every cm³!
- The " ν **freezout**" is much earlier than photons
- CvB: one of the few yet untested predictions of the SM
- **Detecting CvB is a strategic goal for fundamental** physics. [Weinberg, 1962]

Observation of the cosmological neutrinos would then provide a window into the 1st second of creation

Why have we not discovered CvB yet?

Planck 20

LE FIGARO · f

How to probe the early Universe? $C\nu B$ and CMB

- **Gamov:** Early Universe is radiation dominated. $\rho_{\rm rad}/\rho_{\rm matter} \sim 10^{10}$
- For cosmology, any relativistic particle is "radiation" !
- In fact, early Universe has equal populations of ν/γ .
- As Universe expands, ν/γ decouple, relic backgrounds (CMB /CvB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are **411 relic photons** and **339** relic neutrinos in every cm³!
- The " ν **freezout**" is much earlier than photons
- CvB: one of the few **yet untested predictions of the SM**
- **Detecting CvB is a strategic goal for fundamental** physics. [Weinberg, 1962]
- Neutrino oscillations can only measure Δm and hierarchy

Detecting relic neutrinos via β decay

Neutrino capture is **threshold-less** – soft relic neutrino detection [Weinberg, 1962]

 β decay

Neutrino capture

Detecting relic neutrinos via β decay

- Neutrino capture is threshold-less soft relic neutrino detection [Weinberg, 1962]
- The **2 parts of the spectru**m are separated by $2m_{\nu}$

Challenges

- High energy precision (order of $m_{\nu} \sim 10$ meV)
- Sufficient **activity rate** (several events per year)

 β decay

Neutrino capture

 $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e \quad \nu_e + (A,Z) \rightarrow (A,Z+1) + e^-$

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

• High number of emitters (order of 10²⁵)

In gaseous form?

3L

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: smallenough to have a high decay rate, but large enough not to decay instantly
- High **number of** emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

In gaseous form?

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: smallenough to have a high decay rate, but large enough not to decay instantly
- High number of emitters (order of 10^{25})

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Cross section

 $\lambda = \left(\frac{R_{atom}^{2}}{R_{atom}^{2}} \frac{N}{L^{3}} \right)^{-1} > L$

$L \sim 1 \mathrm{km}$

Very naive! In reality much bigger

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: smallenough to have a high decay rate, but large enough not to decay instantly
- High **number of** emitters (order of 10^{25})

- \bullet

 ΔE

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Low volume

$$E \sim \frac{V_{\text{source}}}{V_{\text{detector}}}$$

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: smallenough to have a high decay rate, but large enough not to decay instantly
- Low emitter **Q-value**
 - Low emitter densities electron free path bigger than the system size
- Low **volume**

High **number of** emitters (order of 10^{25})

High energy precision

High enough activity

- Low emitter **Q-value** [Cocco et.al., 2007]
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly
- High number of emitters (order of 10^{25})

3

High energy precision

Low emitter **Q-value**

Low emitter densities electron free path bigger than the system size

Radioactive material in gaseous Ο form does not suit

Need in the **solid-state based** Ο experiment

_ow volume

PTOLEMY project State of the art

- Tritium as a β -decay emitter.
- Tritium is deposed on graphene sheets
- $\approx 4 \text{ CvB}$ events per year.
- Outstanding energy resolution of the apparatus ≈ 10 meV.

Jungle of many-body and chemical effects

We need energy resolution $> m_{\nu} \sim 10 \text{ meV}$

Jungle of many-body and chemical effects

The width of the peak that serves as a signature of $C\nu B$ is defined by

- The energy **resolution of the apparatus**
- Intrinsic physical effects

Heisenberg uncertainty

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Is 2 orders of magnitude greater than the resolution needed
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

 $[yr^{-1}\mathrm{eV}^{-1}]$

The uncertainty in energy of the emitted electron ΔE

- Is of the order of 0.5 eV
- Weakly depends on the potential stiffness.
- Strongly depends on the radioactive nucleus.

Jungle of many-body and chemical effects

Generalised smeared spectrum

The bare spectrum of the β decay

$$\frac{d\Gamma^{(0)}}{dE_e} = \frac{4E_e p(E_e)}{(2\pi)^4 \hbar} \int E_\nu k(E_\nu) dE_\nu \Big| \int dx j_{\rm lept}^\mu(x, E_e, E_\nu) J_\mu^{\rm nucl}(x) \Big|^2 \delta(E_e + E_\nu - E_{\alpha_0}).$$

in the presence of the substrate becomes smeared

$$\frac{d\Gamma}{dE_e} = \frac{4E_e p(E_e)}{(2\pi)^4 \hbar} \int E_{\nu} k(E_{\nu}) dE_{\nu} \Big| \int dx j_{\text{lept}}^{\mu}(x, E_e, E_{\nu}) J_{\mu}^{\text{nucl}}(x) \Big|^2 \mathcal{F}(E_e + E_{\nu} - E_{\alpha_0}).$$

where the correlation function $\mathcal{F}(\omega)$ represents the **finite lifetime** of the system

$$\frac{1}{2\pi} \int d\tau \left\langle \alpha_0, z \right| \hat{\chi} e^{i\tau \hat{H}_{z+1}^{\alpha}} \hat{\chi}^{\dagger} \left| \alpha_0, z \right\rangle e^{i\tau (E_e + E_\nu - E_{\alpha_0})} = \mathcal{F}(E_e + E_\nu - E_{\alpha_0})$$

and maybe can be probed on the experiment