AXION WIGGLES IN HIGH-ENERGY PHOTON SPECTRA

Based on [2305.03604, 2111.08303]

Jonas Tjemsland

with Michael Kachelrieß Norwegian University of Science and Technology

Light Dark World 2023

The axion parameter space

(adapted from [10.5281/zenodo.3932430])

Electromagnetic cascades

D

Electromagnetic cascades

Electromagnetic cascades

Simulated with Monte Carlo code ELMAG [1106.5508, 1909.09210]

The cascade spectrum depends on the intergalactic magnetic fields!

The intergalactic magnetic fields must be of primordial origin
 B ≥ 10⁻¹⁴ G

Photon-axion oscillations

1. Decreased opacity of the Universe

Example: GRB221009A

Photon-axion oscillations can explain the 18 TeV LHAASO events!

Galanti et al. [2210.05659], Baktash et al. [2210.07172], Carenza & Marsh [2211.02010], Troitsky [2210.09250]...

2. Wiggles ("irregularities") in photon spectra

2. Wiggles ("irregularities") in photon spectra

The "irregularities" have the same regular behaviour as in a homogeneous magnetic field

Idea: Use the energy dependence of the wiggles as observable

$$G(k) = \left| \int_{\eta_{\min}}^{\eta_{\max}} \mathrm{d}\eta \, q(\eta) \mathrm{e}^{\mathrm{i}\eta k} \right|^2 \approx \left| \frac{1}{N} \sum_{\mathrm{events}} \exp\left\{ \mathrm{i}\eta k \right\} \right|^2$$

Idea: Use the energy dependence of the wiggles as observable

$$G(k) = \left| \int_{\eta_{\min}}^{\eta_{\max}} \mathrm{d}\eta \, q(\eta) \mathrm{e}^{\mathrm{i}\eta k} \right|^2 \approx \left| \frac{1}{N} \sum_{\mathrm{events}} \exp\left\{ \mathrm{i}\eta k \right\} \right|^2$$

Two main advantages:

1. A detection method independent of the modeling of the magnetic fields

Idea: Use the energy dependence of the wiggles as observable

$$G(k) = \left| \int_{\eta_{\min}}^{\eta_{\max}} \mathrm{d}\eta \, q(\eta) \mathrm{e}^{\mathrm{i}\eta k} \right|^2 pprox \left| \frac{1}{N} \sum_{\mathrm{events}} \exp\left\{ \mathrm{i}\eta k \right\}
ight|^2$$

Two main advantages:

- 1. A detection method independent of the modeling of the magnetic fields
- 2. Few photons are needed

A peak indicate an energy dependent fluctuation characteristic for axions

Example: PKS 2155-304 with CTA

50h detection time with CTA Difficult to find a signal with a standard χ^2 analysis

Example: PKS 2155-304 with CTA

TS: Area under the curve of $|G(k) - G_B(k)|$

probability distribution!

Is there a signal in the Fermi data? with M. Meyer

A small (1 σ) preference for axions in a new Fermi analysis of the quasar CTA102 Davies, Meyer & Cotter (2022):

Is there a signal in the Fermi data? with M. Meyer

A small (1σ) preference for axions in a new Fermi analysis of the quasar CTA102 Davies, Meyer & Cotter (2022):

The Fermi tools gtobssim and gtselect makes it easy to look for axion wiggles!

CTA 102

3C454.3

Summary

- Photon-axion oscillations imprint wiggles with known energy dependence on high-energy photon spectra
- Axion wiggles can probed with the discrete power spectrum
 Pros: Sensitive, and independent of the magnetic field modeling
 Cons: Difficult to set upper limits
- The variation in realistic magnetic field models might increase the sensitivity for photon-axion oscillations