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ALP dark matter in the standard paradigm

An “axion-like-particle (ALP)" is defined as a scalar field ¢ with the following effective Lagrangian at
low energies:

Lap = -+ .0 — Nb(T) {1 - cos<£>} — & uF B 4
2 A 4

The form of Ap(T) and myfys are fixed for the QCD axion, while they are free parameters for an ALP.
(150 MeV

N(T) ~ mj, x T
1 , T <150 MeV

8.16
. T > 150 MeV
) - . myf° ~ (76 MeV)*

The cosmological evolution depends whether the ALP was present during inflation or not:

e Post-inflationary: Different initial conditions in each Hubble patch.
= Inhomogeneous ¢ including topological defects, such as domain walls and strings.

e Pre-inflationary: Random initial angle 8 = ¢/f4 € [0,27) in the observable universe.
= Initially homogeneous w/o topological defects. Focus of this talk.
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Standard Misalignment Mechanism in the pre-inflationary scenario

During its cosmological evolution, the ALP field
obeys the following equation of motion:

1dv 3

H—— =<7 =2
6+ 3H6 9+f2 G =0 H=:
v

~0
Assuming negligible initial kinetic energy, the early-
and late-time limits are
constant, 3H > my
a(t) 32 cos(myt + ), 3H < my

o(t) ~

The energy density at late times behaves as The relic density for ALP dark matter is
3 determined by

p(a) ~ V() x (@) oca?® — cold matter

S~ g 0<6; <m.

initial energy redshift
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ALP dark matter parameter space (with KSVZ-like photon coupling gy, = (aem/27)(1.92/14))
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How to extend the parameter space?

In order to expand the parameter space to lower f; values, we need to boost the DM production.

3
aOSC
Pp,0 ~ Pp,i X
~—~ do
N——

increase the

initial energy delay the
oscillations
e Non-periodic potentials (Axion Monodromy): 6; > 7 possible. Ol ot a1 1906 06352

Chatrchyan, CE, Koschnitzke, Servant 2305.03756

2 2
m, f; p
Vi) = = [(1+6°) - 1.
0) ==, +
e Large misalignment: Delay the onset of oscillations via |7 — 0] < 1 Zhang, Chiueh 1705.01439

Arvanitaki et al. 1909.11665

e Kinetic misalignment: Large initial kinetic energy and delay Co et al. 1910.14152; Chang et al. 1911.11885

CE, Servant, Sgrensen, Sato 2206.14259
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ALP fluctuations and the mode functions

e Even in the pre-inflationary scenario ALP field has some fluctuations on top of the homogeneous

background which can be described by the mode functions in the Fourier space.
C Pk, kx
Q(t,x):e(t)—i—/ Wﬂke + h.c.

e These fluctuations are seeded by adiabatic and/or isocurvature perturbations:

Adiabatic perturbations (This work) Isocurvature perturbations
e Due to the energy density perturbations of the e If ALPs exist during inflation and are light
dominating component, unavoidable. m <K Hiy¢, they pick up quantum fluctuations:
e Initial conditions in the super-horizon limit: 00 ~ Hine/ (27 fing)
6i/(L+ wi) = 6;/(1 + wj), e Can be avoided/suppressed if ALP has a large

where § is the density contrast, and w is EoS. mass during inflation, or firf > fioday-
e Even though the fluctuations are small initially, they can be enhanced exponentially later via
tachyonic instability and/or parametric resonance yielding to fragmentation.
Greene et al. hep-ph/9808477; Jaeckel et al. 1605.01367; Cedeno et al. 1703.10180

Berges et al. 1903.03116; Fonseca et al. 1911.08472; Morgante et al. 2109.13823

6/12


https://arxiv.org/abs/hep-ph/9808477
https://arxiv.org/abs/1605.01367
https://arxiv.org/abs/1703.10180
https://arxiv.org/abs/1903.03116
Fonseca~et~al.~https://arxiv.org/abs/1911.08472
https://arxiv.org/abs/2109.13823

Efficiency of parametric resonance

e The efficiency of the parametric resonance can be estimated by comparing the energy density in the
fluctuations to the one in the homogeneous mode:

D m k
A= (AT o< As /d/-cexp > Be |, k= ——
j4e) ~~ osc S~~~ Mosc dosc
~10—9 ~O(1)

e The field dynamics becomes non-linear if A = 1. Lattice simulations are needed.

e The boundary is mainly determined by mosc/Hosc due to the exponential dependence:

Mosc

o ~ O(10)

boundary

where the exact value depends on the ALP model.

® Mosc/Hosc increases as one goes to the upper region of the ALP parameter space, i.e. lower f, values.
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Power spectrum at the end of parametric resonance

m=10"1eV, @ mP2H=2x103

f=6.0x 10% GeV
f=3.0 x 10 Gev

10°

p(t)
The power spectrum (two-point function) determines
the distribution of structures today:

Pilh) = 2 (

After the parametric resonance the power spectrum can
reach to O(1) values:

The size of fluctuations is determined by the density 10727 — =20 100 Gev
—— f=1.5x%x10" GeV
contrast: N rore{  [=1ax1oGev
L o)~ (1)
5a(%, £) = 200 —P) h’l’

W

y"\‘l\ i

Dimensionless power spectrum Ps(k)

2 0! 100
~ o
6p ( k, t) ‘ Dimensionless momentum K = k/\/2ma.H «

constant mass, @ m/2H =2 x 10°

Dense and compact ALP mini-clusters can also be
formed in the pre-inflationary scenario!

Dimensionless power spectrum Ps(k)

107 10°
Dimensionless momentum k
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Halo spectra with Excursion Set Formalism (Non-periodic with p = —1/2)
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Darker colors = Larger initial value = More delay = More efficient parametric resonance
Experimental prospects from Tilburg et al. 1804.01991; Arvanitaki et al. 1909.11665; Ramani et al. 2005.03030
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Dense halo region in the ALP parameter space

Shaded regions indicate the

parameter space where parametric Tog o (ME***(m,) /Mo)
o g 9 6 3 0 -3 — —9
resonance might create halos with —12 - — : : . .
-3 . I Kinetic Misalignment
ps 2 10 Mg pc™> which are more S Large Misalignment
H - H - H I Non-periodic p = +1/2
13
likely to survive tidal stripping B Nonpelodinl 172
Arvanitaki et al. 1909.11665.
14
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. o o %
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structures gives us information ' o . s - T s e
about the decay constant even logy(ma/eV)

when ALP does not couple to SM!
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Conclusions and Outlook

e The Standard Misalignment Mechanism is not sufficient to account for the correct dark matter
abundance, in the ALP parameter space where the experiments are most sensitive.

e This parameter space can be opened by considering models where the initial energy budget is
increased, and the onset of oscillations is delayed from the conventional value mosc/Hosc ~ 3.

e In these models which go beyond the standard paradigm, the fluctuations can grow exponentially,
and dense ALP mini-clusters can be formed even in the pre-inflationary scenario.

e Our semi-analytical study predicts that there is a band on the (my, f,)-plane where the dense
structures can be formed, and the location of this band does not depend drastically on the
production mechanism.

e The existence of this band allows us to obtain information about the decay constant, even if ALP
does not couple to the Standard Model.
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Thank you for listening!

Cem Eroncel
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