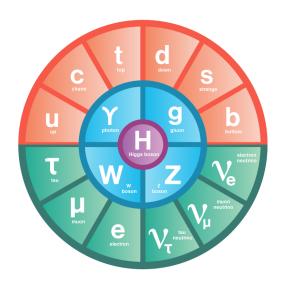
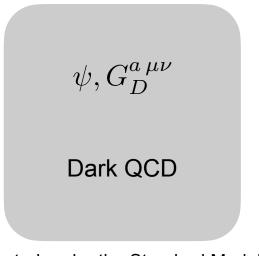

Composite ALPs through the Z portal

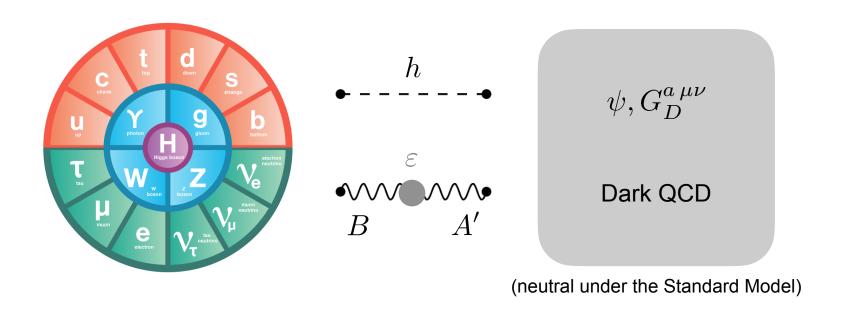
Motivated by big questions: dark matter (e.g. SIMPs), naturalness
 (neutral naturalness, relaxion models), ...

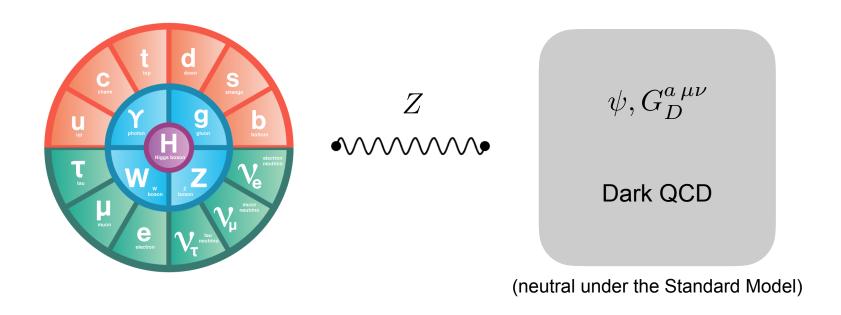

[Hochberg et al. 2014] [Chacko, Goh, Harnik 2005] [Graham, Kaplan, Rajendran 2015]


"Dark shower" - type signatures at the LHC: challenging, but major progress recently, with room for further improvement

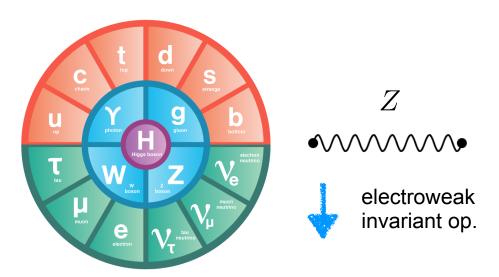
[Born et al. 2023]
[Cohen et al. 2023]

[Born et al. 2023] [Cohen et al. 2023] [Bernreuther et al. 2022] [Knapen, Shelton, Xu 2021]


. . .


(neutral under the Standard Model)

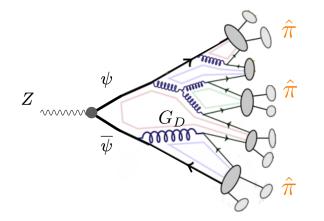
Which portal?


Which portal?

Some interactions are very well studied: Higgs, dark photon

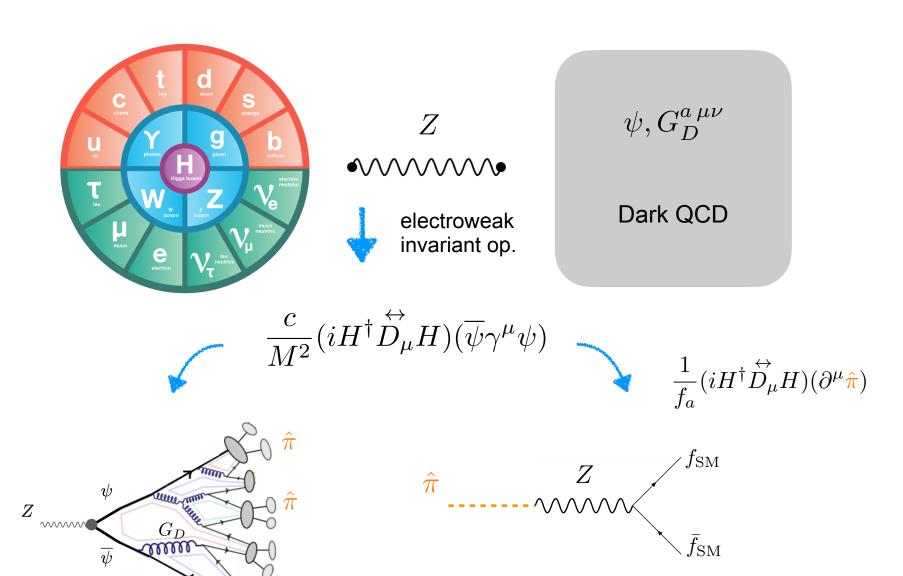
Z portal is far less explored, yet the LHC is collecting a huge sample: $>10^{11}~Z$ bosons @ High-Luminosity phase

(one thousand times more than for Higgs)



$$\psi, G_D^{a\,\mu\nu}$$

Dark QCD



$$\frac{c}{M^2}(iH^{\dagger}\overset{\leftrightarrow}{D_{\mu}}H)(\overline{\psi}\gamma^{\mu}\psi)$$

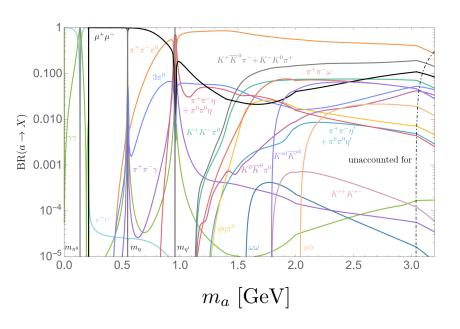
"Dark shower" events generated by Z decays at LHC

Mostly produce lightest dark hadrons, the dark pions

dark pions behave as composite ALPs

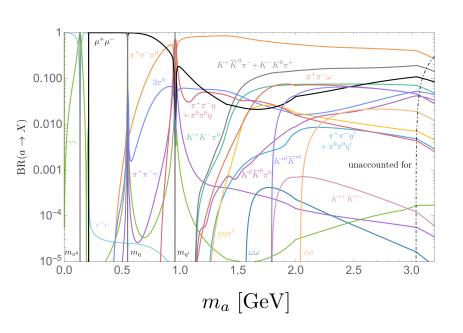
ALP through the Z portal

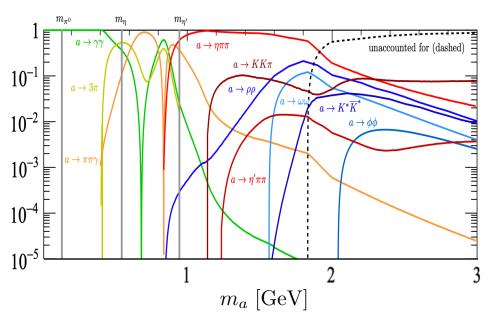
Distinctive feature of Z portal is coupling of ALPs (dark pions) to Higgs current,


$$\frac{1}{f_a}(iH^{\dagger}\overset{\leftrightarrow}{D_{\mu}}H)(\partial^{\mu}a) \qquad \overset{\mathsf{EOM}}{\to} \qquad -\frac{\partial_{\mu}a}{f_a}\sum_{f} c_f \bar{f}\gamma^{\mu}\gamma_5 f \,, \quad c_f = T_L^3(f)$$

For $m_a \sim {\rm GeV}$, must consider decays to exclusive final states containing SM hadrons

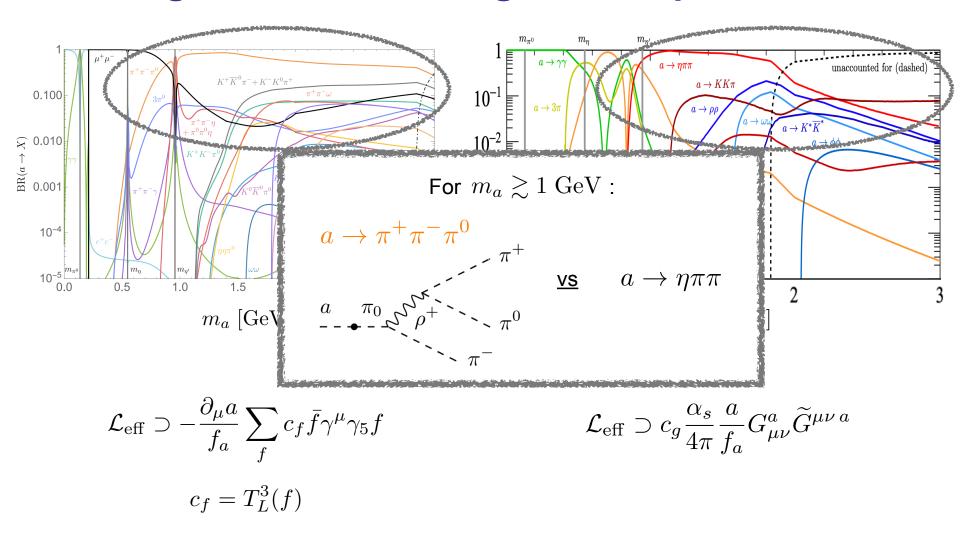
Apply data-driven methods, following [Aloni, Soreq, Williams 2018]


- For $m_a < m_{\eta'} \approx 1 \ {\rm GeV}$, match ALP effective field theory to Chiral Perturbation Theory (leading order + corrections)
- For $m_{\eta'} < m_a \lesssim 3~{\rm GeV}$: include exchange of scalar, vector, tensor resonances, using as much input from data as feasible


Isospin-violating couplings lead to important differences with universal scenarios

$$\mathcal{L}_{\mathrm{eff}} \supset -\frac{\partial_{\mu} a}{f_a} \sum_{f} c_f \bar{f} \gamma^{\mu} \gamma_5 f$$
 $c_f = T_L^3(f)$

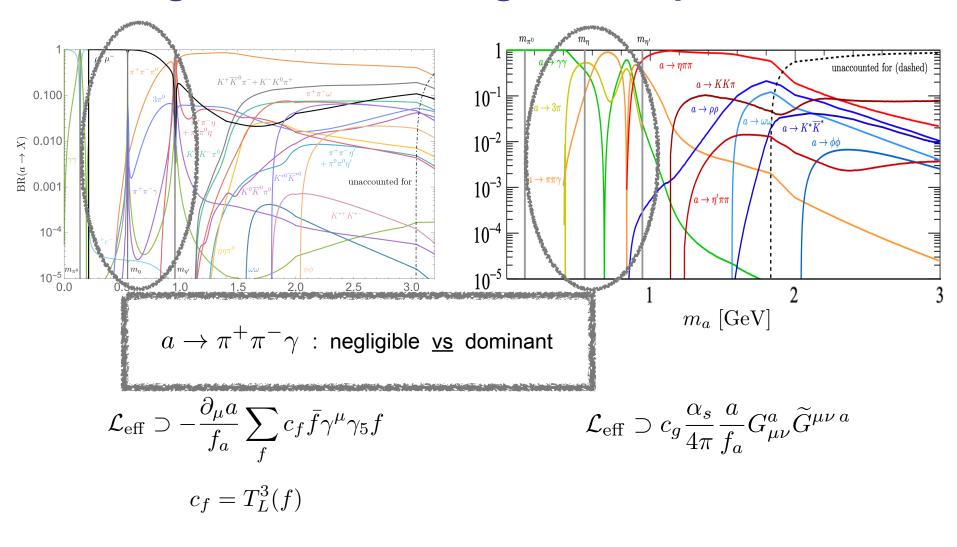
isospin-breaking coupling to fermions



$$\mathcal{L}_{\mathrm{eff}} \supset -\frac{\partial_{\mu}a}{f_a} \sum_{f} c_f \bar{f} \gamma^{\mu} \gamma_5 f$$

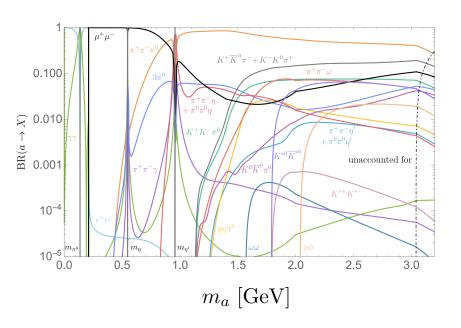
$$c_f = T_L^3(f)$$

$$\mathcal{L}_{\text{eff}} \supset c_g \frac{\alpha_s}{4\pi} \frac{a}{f_a} G^a_{\mu\nu} \widetilde{G}^{\mu\nu\,a}$$


isospin-breaking coupling to fermions

coupling to gluons

isospin-breaking coupling to fermions


coupling to gluons

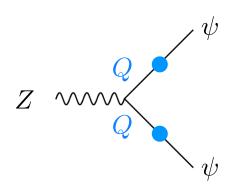
isospin-breaking coupling to fermions

coupling to gluons

ALP couplings to SM hadrons

$$\mathcal{L}_{ ext{eff}} \supset -rac{\partial_{\mu}a}{f_a} \sum_f c_f ar{f} \gamma^{\mu} \gamma_5 f$$

Our calculations apply to arbitrary (flavour-diagonal) couplings to fermions



Use it for your next ALP model!

[Cheng, Li, Salvioni, 2021]

Models

$$\frac{c}{M^2}(iH^{\dagger}\overset{\leftrightarrow}{D_{\mu}}H)(\overline{\psi}\gamma^{\mu}\psi)$$

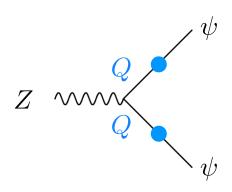
$$\mathcal{L}_{\mathrm{UV}} \supset \overline{Q}Y\psi H \quad \rightarrow \quad \frac{c}{M^2} \sim \frac{Y^2}{M_Q^2}$$

$$\mathcal{L}_{\mathrm{UV}} \supset \delta \hat{M}^2 Z^{\mu} Z'_{\mu} \quad \rightarrow \quad \frac{c}{M^2} \sim \frac{g_D^2}{M_{Z'}^2}$$

Dark quarks Q with SM electroweak charges

Need to be heavier than ~ 1 TeV

Dark gauge boson Z^{\prime} Can even be lighter than the Z


[Cheng, Li, Salvioni, 2021]

[Cheng, Jiang, Li, Salvioni, 2310.xxxxxx]

In both models, there are corrections to electroweak precision observables What dark pion signatures can we expect, after taking the bounds into account?

Models

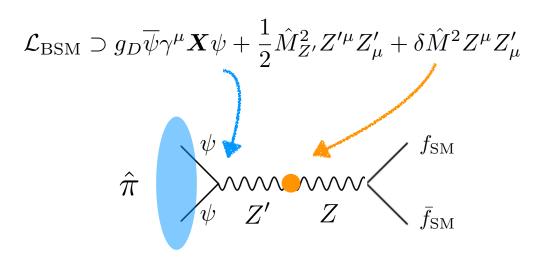
$$\frac{c}{M^2}(iH^{\dagger}\overset{\leftrightarrow}{D_{\mu}}H)(\overline{\psi}\gamma^{\mu}\psi)$$

$$\mathcal{L}_{\mathrm{UV}} \supset \overline{Q}Y\psi H \quad \rightarrow \quad \frac{c}{M^2} \sim \frac{Y^2}{M_Q^2}$$

Dark quarks *Q* with SM electroweak charges

Need to be heavier than ~ 1 TeV

[Cheng, Li, Salvioni, 2021]

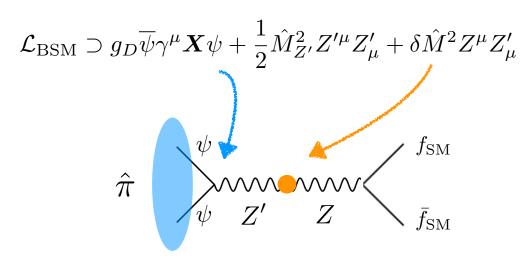

$${\cal L}_{
m UV} \supset \delta \hat{M}^2 Z^\mu Z'_\mu \quad
ightarrow \quad rac{c}{M^2} \sim rac{g_D^2}{M_{Z'}^2}$$

Dark gauge boson Z'Can even be lighter than the Z

[Cheng, Jiang, Li, Salvioni, 2310.xxxxxx]

In both models, there are corrections to electroweak precision observables What dark pion signatures can we expect, after taking the bounds into account?

Gauge boson of dark $U(1)_D$ symmetry


$$-\frac{\varepsilon}{2}Z'_{\mu\nu}B^{\mu\nu}$$

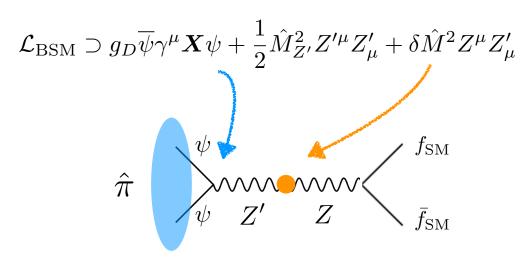
[Essig, Schuster, Toro 2009]

Kinetic mixing does <u>not</u> mediate decay of dark pions ε affects transverse modes, while dark pion mixes with longitudinal modes

Need mass mixing (assumed to originate from second doublet with $U(1)_D$ charge)

Gauge boson of dark $U(1)_D$ symmetry

Integrating out Z and Z', find effective decay constant $\mathcal{L}_{\mathrm{eff}} \supset -\frac{\mathcal{O}_{\mu}\pi_{i}}{f^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$

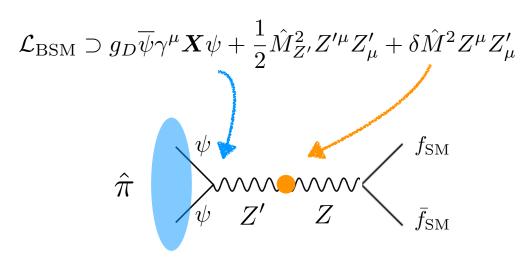

$$\mathcal{L}_{\text{eff}} \supset -\frac{\partial_{\mu}\hat{\pi}_{i}}{f_{a}^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$$

$$f_a^{(i)} = \frac{2M_Z^2 M_{Z'}^2}{\text{Tr}(\sigma_i \mathbf{X}_A') g_D g_Z f_{\hat{\pi}} \delta \hat{M}^2} \approx 1 \text{ PeV } \frac{1}{\text{Tr}(\sigma_i \mathbf{X}_A') g_D} \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right) \left(\frac{10^{-2}}{\delta \hat{M}^2 / M_Z^2}\right) \left(\frac{M_{Z'}}{60 \text{ GeV}}\right)^2$$

focus on light Z', below M_Z

Gauge boson of dark $U(1)_D$ symmetry

Integrating out Z and Z', find effective decay constant $\mathcal{L}_{\mathrm{eff}} \supset -\frac{\mathcal{O}_{\mu}\pi_{i}}{f^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$

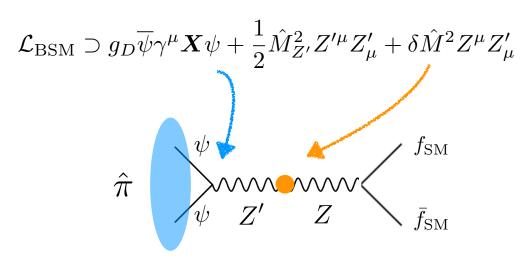

$${\cal L}_{
m eff} \supset -rac{\partial_{\mu}\hat{\pi}_{i}}{f_{a}^{(i)}}T_{L}^{3}(f)ar{f}\gamma^{\mu}\gamma_{5}f_{a}^{2}$$

$$f_a^{(i)} = \frac{2M_Z^2 M_{Z'}^2}{\text{Tr}(\sigma_i \mathbf{X}_A') g_D g_Z f_{\hat{\pi}} \delta \hat{M}^2} \approx 1 \text{ PeV } \frac{1}{\text{Tr}(\sigma_i \mathbf{X}_A') g_D} \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right) \left(\frac{10^{-2}}{\delta \hat{M}^2 / M_Z^2}\right) \left(\frac{M_{Z'}}{60 \text{ GeV}}\right)^2$$

upper bound on Z - Z' mixing from electroweak precision

assume $N_f = 2$ dark flavors $\rightarrow N_f^2 - 1 = 3$ dark pions

Gauge boson of dark $U(1)_D$ symmetry


Integrating out Z and Z', find effective decay constant $\mathcal{L}_{\mathrm{eff}} \supset -\frac{\mathcal{O}_{\mu}\pi_{i}}{f^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$

$${\cal L}_{
m eff} \supset -rac{\partial_{\mu}\hat{\pi}_{i}}{f_{a}^{(i)}}T_{L}^{3}(f)ar{f}\gamma^{\mu}\gamma_{5}f_{a}^{2}$$

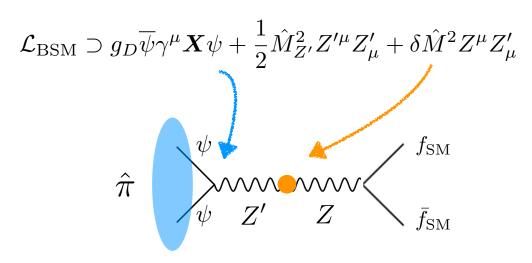
$$f_a^{(i)} = \frac{2M_Z^2 M_{Z'}^2}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D g_Z f_{\hat{\pi}} \delta \hat{M}^2} \approx 1 \text{ PeV} \frac{1}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D} \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right) \left(\frac{10^{-2}}{\delta \hat{M}^2 / M_Z^2}\right) \left(\frac{M_{Z'}}{60 \text{ GeV}}\right)^2$$

decay constant of dark pions

Gauge boson of dark $U(1)_D$ symmetry

Integrating out Z and Z', find effective decay constant $\mathcal{L}_{\mathrm{eff}} \supset -\frac{\mathcal{O}_{\mu}\pi_{i}}{f^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$

$$\mathcal{L}_{\text{eff}} \supset -\frac{\partial_{\mu}\hat{\pi}_{i}}{f_{a}^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$$


$$f_a^{(i)} = \frac{2M_Z^2 M_{Z'}^2}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D g_Z f_{\hat{\pi}} \delta \hat{M}^2} \approx 1 \text{ PeV} \frac{1}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D} \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right) \left(\frac{10^{-2}}{\delta \hat{M}^2 / M_Z^2}\right) \left(\frac{M_{Z'}}{60 \text{ GeV}}\right)^2$$

axial-vector coupling of Z' to physical dark quarks

(generated by dark Yukawas $y_{ij}\psi_i\Phi\psi_j$)

assume $N_f = 2$ dark flavors $\rightarrow N_f^2 - 1 = 3$ dark pions

Gauge boson of dark $U(1)_D$ symmetry

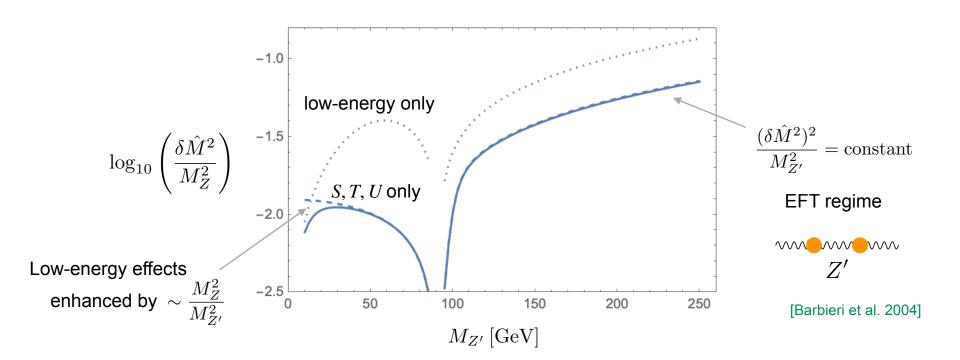
Integrating out Z and Z', find effective decay constant $\mathcal{L}_{\mathrm{eff}} \supset -\frac{\mathcal{O}_{\mu}\pi_{i}}{f^{(i)}}T_{L}^{3}(f)\bar{f}\gamma^{\mu}\gamma_{5}f$

$${\cal L}_{
m eff} \supset -rac{\partial_{\mu}\hat{\pi}_i}{f_a^{(i)}}T_L^3(f)ar{f}\gamma^{\mu}\gamma_5 f$$

$$f_a^{(i)} = \frac{2M_Z^2 M_{Z'}^2}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D g_Z f_{\hat{\pi}} \delta \hat{M}^2} \approx 1 \text{ PeV} \frac{1}{\text{Tr}(\sigma_i \boldsymbol{X}_A') g_D} \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right) \left(\frac{10^{-2}}{\delta \hat{M}^2 / M_Z^2}\right) \left(\frac{M_{Z'}}{60 \text{ GeV}}\right)^2$$

typical decay constant is at ~ PeV: dark pions are interesting target for present & future LHC experiments

assume $N_f = 2$ dark flavors $\rightarrow N_f^2 - 1 = 3$ dark pions


Electroweak precision constraints

• Z pole couplings and W mass $\rightarrow S, T, U$ parameters

[Peskin, Takeuchi 1992]

Add low-energy data (atomic parity violation, ee, ep scattering)

[Altarelli et al. 1991]

[Here results for zero kinetic mixing, complete analysis in paper.

S,T,U fit has flat direction for $arepsilon \approx -\,\delta \hat{M}^2/(s_W M_Z^2)$, lifted by low-energy data]

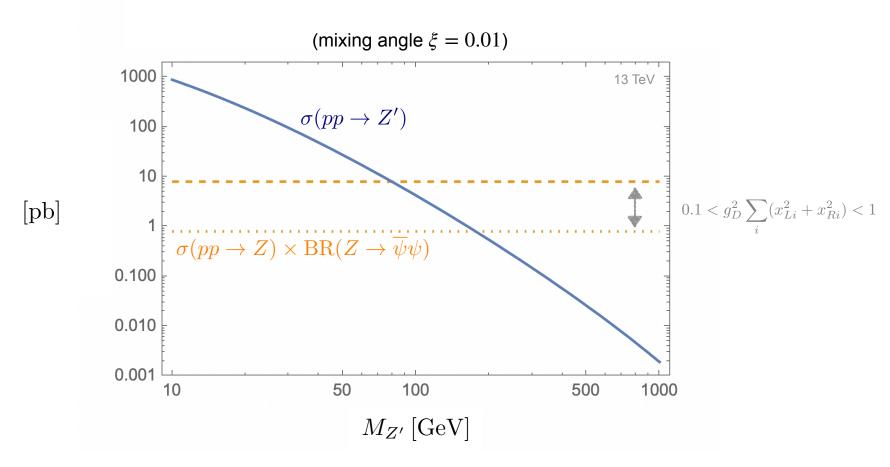
Electroweak precision constraints

• Z pole couplings and W mass $\rightarrow S, T, U$ parameters

[Peskin, Takeuchi 1992]

Add low-energy data (atomic parity violation, ee, ep scattering)

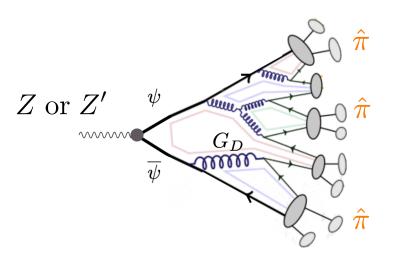
[Altarelli et al. 1991]



For light
$$Z'$$
, bound is approximately $\frac{\delta \hat{M}^2}{M_Z^2} \approx \xi \lesssim 10^{-2}$

$$\frac{\delta \hat{M}^2}{M_Z^2} \approx \xi \lesssim 10^{-2}$$

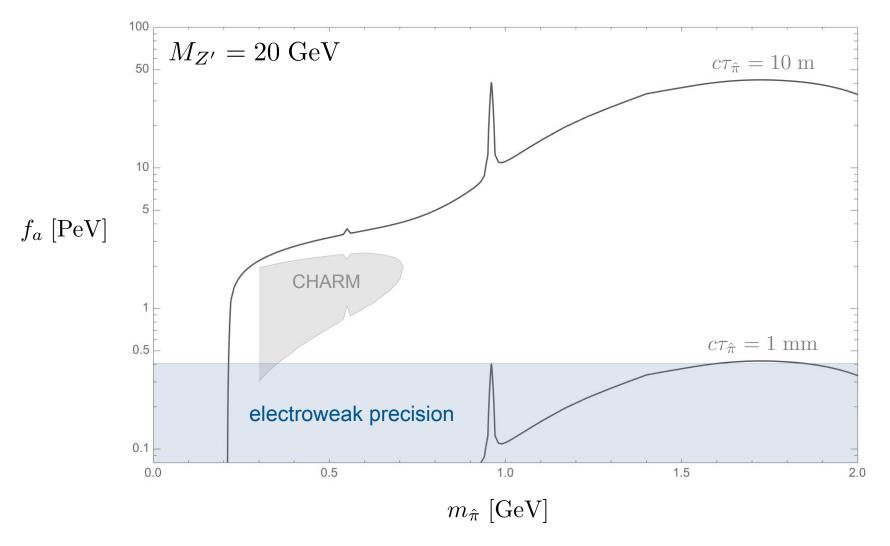
Phenomenology


Dark sector production at the LHC: Z' versus Z

A light Z' gives a large rate of dark sector events, consistently with EW precision

Phenomenology

Signals: dark shower events versus FCNC decays of SM mesons

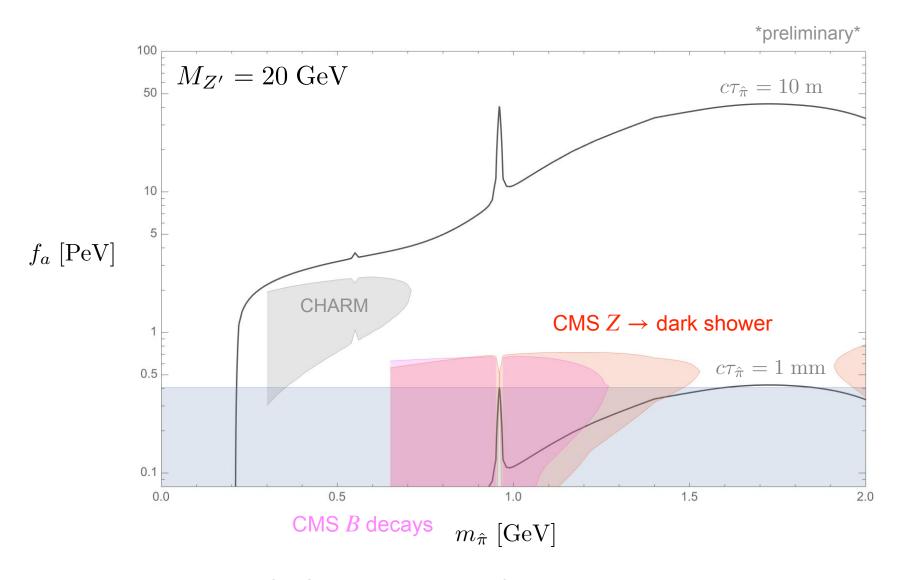

$$B o K \, \hat{\pi}$$
 loop function
$$\mathrm{BR} pprox 10^{-8} \bigg(\frac{1 \, \mathrm{PeV}}{f_a} \bigg)^2 \bigg(\frac{\mathcal{K}_t}{10} \bigg)^2$$

Emerging jets (mix of macroscopic lifetimes)
No hard SM objects automatically associated \rightarrow trigger is key issue, focus on $\hat{\pi} \rightarrow \mu^+ \mu^-$ Distinctive feature of confining dark sector

General probe of light new particles

Only sensitive to f_a

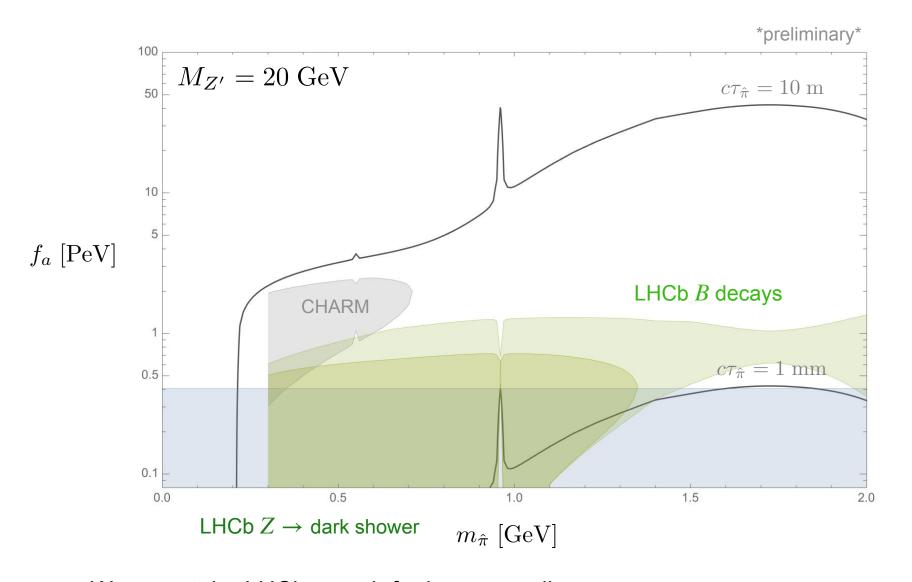
Constraints: pre-LHC



(traded Z - Z^\prime mixing for f_a)

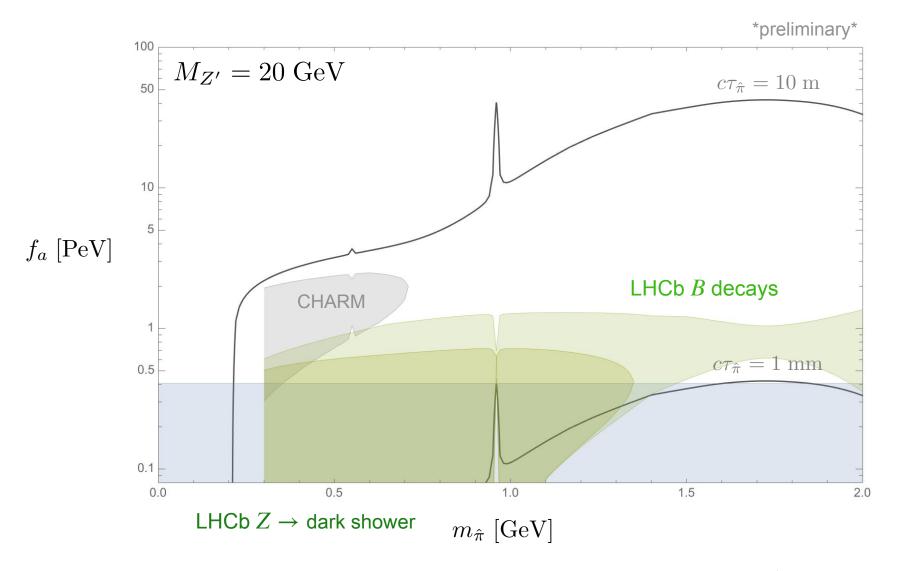
 $\operatorname{Tr}(\sigma_{1,3} \boldsymbol{X}_A') = 1$ $\hat{\pi}_2$ collider stable $g_D = 0.25, \ f_{\hat{\pi}} = 1 \text{ GeV}$

CHARM: [Döbrich, Ertas, Kahlhöfer, Spadaro 2018]

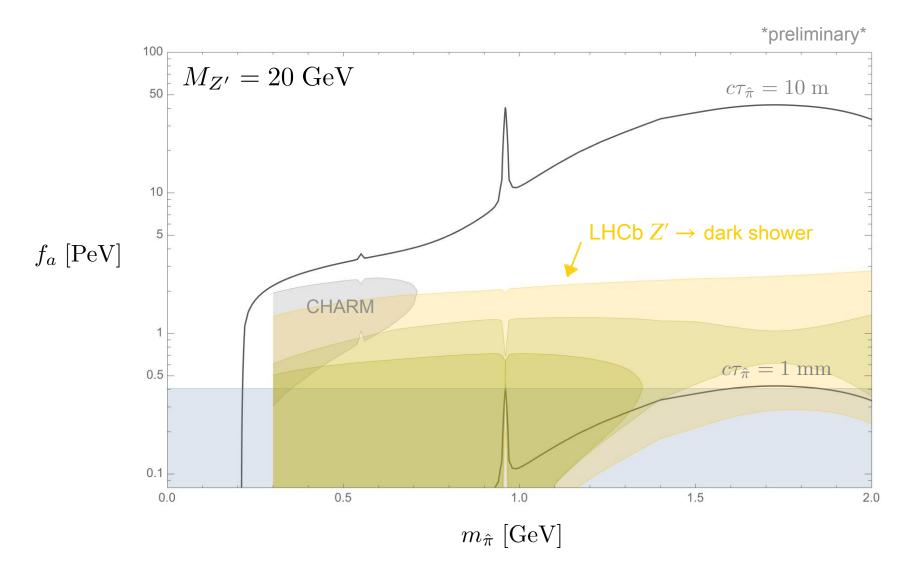

Constraints: CMS

We recast the CMS scouting search for displaced dimuons to dark shower signal

[CMS 2112.13769]


Constraints: LHCb

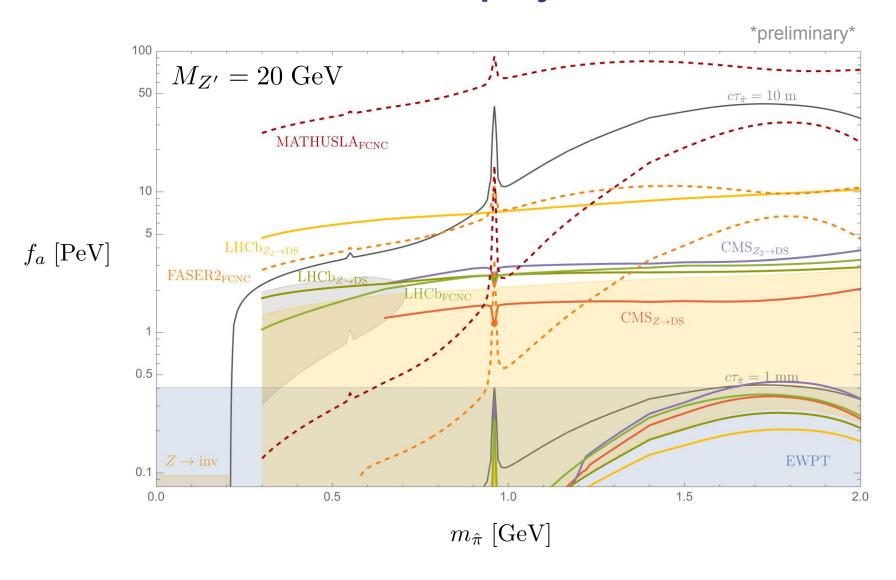
We recast the LHCb search for low-mass dimuon resonances to dark shower signal


[LHCb 2007.03923]

Constraints: LHCb

Z decay exclusions depend on underlying parameters (e.g. $f_{\hat{\pi}}$) B decay exclusions do not

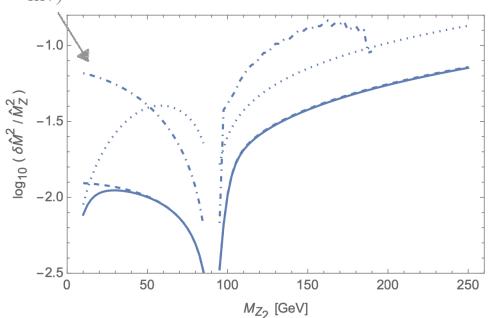
Constraints: LHCb


Dark shower signal initiated by light Z' can be powerfully tested by LHCb

Summary

- More than $10^{11}\,\mathrm{Z\,bosons}$ @ LHC: can it be the portal to a confining dark sector?
- Dark pions behave as composite ALPs. Electroweak precision constraints automatically make them LLPs, leading to dark shower signatures
- ullet Two classes of models. Here focused on completion by (light) Z' with mass mixing
- Presented recasts of CMS and LHCb searches for light dimuon resonances:
 dark shower sensitivity competes with FCNC B meson decays
- Much left to do, starting with hadronic ALP decays. For instance, we find $a \to \pi^+\pi^-\pi^0$ dominates for $m_a \gtrsim 1~{\rm GeV}$

Extra slides


Partial set of projections

(here the Z^\prime is called Z_2)

More on EW precision

DELPHI $e^+e^- \rightarrow \gamma(Z_2 \rightarrow \text{inv})$

$$S = \frac{4s_W^2}{\alpha} \left(\frac{c_W^2}{s_W} \xi t_\chi - c_W^2 \xi^2 \right) , \quad T = \frac{1}{\alpha} \left(2s_W \xi t_\chi + \xi^2 \left(\frac{M_{Z_2}^2}{M_{Z_1}^2} - 2 \right) \right) , \quad U = \frac{4s_W^2}{\alpha} c_W^2 \xi^2 ,$$

$${\cal L}_{Z_1 f ar f} = - rac{ar Z e}{s_W c_W} ar f \gamma^\mu (T_{Lf}^3 - s_*^2 Q_f) f Z_{1\mu} \; ,$$

$$\bar{Z} = 1 + \frac{\alpha T}{2}, \qquad s_*^2 = s_W^2 + \frac{\alpha}{c_W^2 - s_W^2} \left(\frac{S}{4} - s_W^2 c_W^2 T\right),$$

$$\frac{M_W^2}{M_Z^2} = c_W^2 + \frac{\alpha c_W^2}{c_W^2 - s_W^2} \left(-\frac{S}{2} + c_W^2 T + \frac{c_W^2 - s_W^2}{4s_W^2} U \right).$$

(here the Z is called Z_1 and $\varepsilon \equiv \sin \chi$)

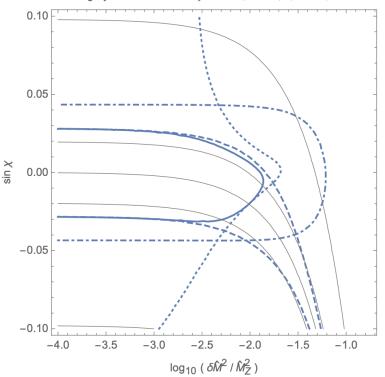
More on EW precision/2

B.1 Oblique parameters for heavy dark Z'

For $M_{Z_2} \gg M_{Z_1}$, the dark Z' can be integrated out to obtain an effective Lagrangian at the weak scale. In the parametrization of Ref. [10], Eqs. (3.5) and (3.6) are replaced by expressions that depend on W, Y, V, X in addition to \widehat{S}, \widehat{T} and \widehat{U} ,

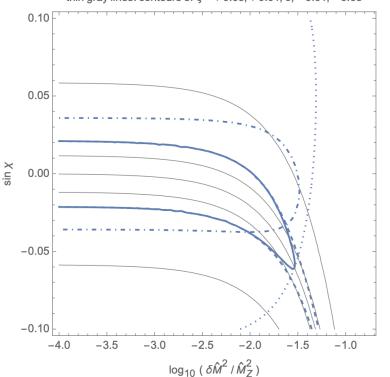
$$\begin{split} \bar{Z} &= 1 + \frac{1}{2} \left[\widehat{T} - W - \frac{s_W^2}{c_W^2} Y + 2 \frac{s_W}{c_W} X \right] \,, \\ s_*^2(M_Z^2) - s_W^2 &= \frac{1}{c_W^2 - s_W^2} \left[s_W^2 \widehat{S} - s_W^2 c_W^2 \widehat{T} - s_W^4 W + \frac{s_W}{c_W} (1 - 2s_W^2 c_W^2) X - s_W^2 c_W^2 Y \right] \,, \\ \frac{M_W^2}{M_Z^2} - c_W^2 &= \frac{c_W^2}{c_W^2 - s_W^2} \left[-2s_W^2 \widehat{S} + c_W^2 \widehat{T} - (c_W^2 - s_W^2) (\widehat{U} - V) - 2s_W c_W X + s_W^2 (W + Y) \right] \,. \end{split}$$

Integrating out the \hat{Z}' at tree level from Eqs. (2.3) and (2.4), we obtain


$$\hat{S} = -\frac{\hat{c}_{W}^{2}}{\hat{s}_{W}} \frac{\delta \hat{M}^{2}}{\hat{M}_{Z'}^{2}} \left(\sin \chi + \hat{s}_{W} \frac{\delta \hat{M}^{2}}{\hat{M}_{Z'}^{2}} \right), \qquad \hat{T} = \hat{c}_{W}^{2} \frac{(\delta \hat{M}^{2})^{2}}{M_{W}^{2} \hat{M}_{Z'}^{2}},
\hat{U} = -\hat{c}_{W}^{2} \frac{(\delta \hat{M}^{2})^{2}}{\hat{M}_{Z'}^{4}}, \qquad W = V = \hat{c}_{W}^{2} \frac{M_{W}^{2} (\delta \hat{M}^{2})^{2}}{\hat{M}_{Z'}^{6}}, \qquad Y = \frac{M_{W}^{2}}{\hat{M}_{Z'}^{2}} \left(\sin \chi + \hat{s}_{W} \frac{\delta \hat{M}^{2}}{\hat{M}_{Z'}^{2}} \right)^{2},
X = -\hat{c}_{W} \frac{M_{W}^{2} \delta \hat{M}^{2}}{\hat{M}_{Z'}^{4}} \left(\sin \chi + \hat{s}_{W} \frac{\delta \hat{M}^{2}}{\hat{M}_{Z'}^{2}} \right). \tag{B.12}$$

We observe that $\widehat{S} = (\widehat{c}_W/\widehat{s}_W)(\widehat{M}_{Z'}^2/M_W^2)X$ and $\widehat{T} = -(\widehat{M}_{Z'}^2/M_W^2)\widehat{U} = (\widehat{M}_{Z'}^4/M_W^4)V$, explicitly illustrating the well-known fact that $\widehat{S}, \widehat{T}, W, Y$ are sufficient to descrive heavy universal new physics [10].

More on EW precision/3


 $M_{Z_2} = 20 \text{ GeV } [95\% \text{ CL}]$

[dashed: Z pole; dotted: low–energy; solid: combined] [dot–dashed: DELPHI] thin gray lines: contours of ξ = + 0.05, + 0.01, 0, - 0.01, - 0.05

 $M_{Z_2} = 60 \text{ GeV } [95\% \text{ CL}]$

[dashed: Z pole; dotted: low–energy; solid: combined] [dot–dashed: DELPHI] thin gray lines: contours of ξ = + 0.05, + 0.01, 0, - 0.01, - 0.05

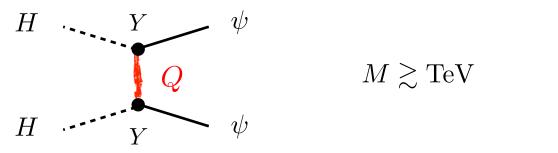
FCNC B meson decays

$$\mathcal{L}_{\text{eff}}^{\text{FCNC}} = -g_D \hat{g}_Z \frac{\delta \hat{M}^2}{M_{Z_1}^2 M_{Z_2}^2 \cos^2 \chi} \frac{\hat{g}^2}{128\pi^2} J_D^{\mu} \bar{d}_j \gamma_{\mu} P_L d_i \sum_{q \in u, c, t} V_{qj}^* V_{qi} \mathcal{K}_q + \text{h.c.} , \qquad (6.1)$$

where

$$\mathcal{K}_q \equiv x_q \log \frac{\Lambda_{\text{UV}}^2}{M_W^2} + \frac{-7x_q + x_q^2}{2(1 - x_q)} - \frac{4x_q - 2x_q^2 + x_q^3}{(1 - x_q)^2} \log x_q,$$
 (6.2)

with the definition $x_q \equiv m_q^2/M_W^2$. The contribution from q = t dominates. The residual divergence appears because our treatment of the Z-Z' mixing is not UV complete. The divergence will be removed in a complete model where the new fields inducing $\delta \hat{M}^2$, such as a second Higgs doublet, are included dynamically. In that case $\Lambda_{\rm UV}$ would be set by the mass of the charged Higgs scalar, possibly up to O(1) factors. Numerically, the dimensionless quantity \mathcal{K}_t varies from 5.0 to 16 as $\Lambda_{\rm UV}$ is increased from 300 GeV to 1 TeV, signaling an important theoretical uncertainty.

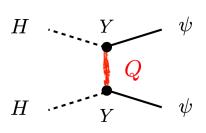

$$BR(B^{+,0} \to \{K^{+}\hat{\pi}_b, K^{*0}\hat{\pi}_b\}) \approx \{0.92, 1.1\} \times 10^{-8} \left(\frac{1 \text{ PeV}}{f_a^{(b)}}\right)^2 \left(\frac{\mathcal{K}_t}{10}\right)^2 \left\{\lambda_{BK\hat{\pi}}^{1/2}, \lambda_{BK^*\hat{\pi}}^{3/2}\right\}$$

Model with heavy fermions Q

- Dark QCD with confinement scale Λ
- N light dark quarks ψ , SM singlets
- ullet N heavy dark quarks Q , with SM electroweak charges

$$\mathcal{L}_{\text{UV}} = \overline{Q}_L \mathbf{Y} \psi_R H + \overline{Q}_R \widetilde{\mathbf{Y}} \psi_L H + \overline{Q}_L \mathbf{M} Q_R + \overline{\psi}_L \boldsymbol{\omega} \psi_R$$

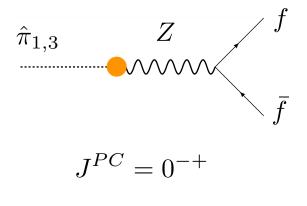
$$\omega, \ \frac{Y\widetilde{Y}v^2}{M} \ll \Lambda \qquad \rightarrow \qquad (N^2-1) \ \ \mathrm{pNGBs} \qquad \text{``dark pions''}$$

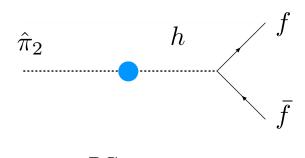


$$M \gtrsim \text{TeV}$$

heavy mediators

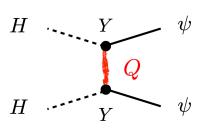
Dark pions


Integrate out heavy fermions Q

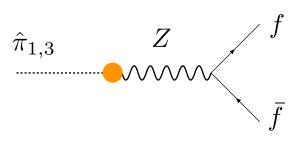

$$\mathcal{L}_{\mathrm{EFT}} \sim (\overline{\psi}_R \boldsymbol{Y}^\dagger \boldsymbol{M}^{-2} \boldsymbol{Y} \gamma^\mu \psi_R) \; (iH^\dagger D_\mu H) + (\overline{\psi}_L \widetilde{\boldsymbol{Y}}^\dagger \boldsymbol{M}^{-2} \widetilde{\boldsymbol{Y}} \gamma^\mu \psi_L) \; (iH^\dagger D_\mu H)$$

$$- \overline{\psi}_L \boldsymbol{\omega} \psi_R + \overline{\psi}_L \widetilde{\boldsymbol{Y}}^\dagger \boldsymbol{M}^{-1} \boldsymbol{Y} \psi_R |H|^2$$
Higgs portal (dim-5)

• N=2 flavors: dark pions $\hat{\pi}_a \sim \overline{\psi} i \sigma_a \gamma_5 \psi$


composite ALP

composite Higgs-mixed scalar


Dark pions

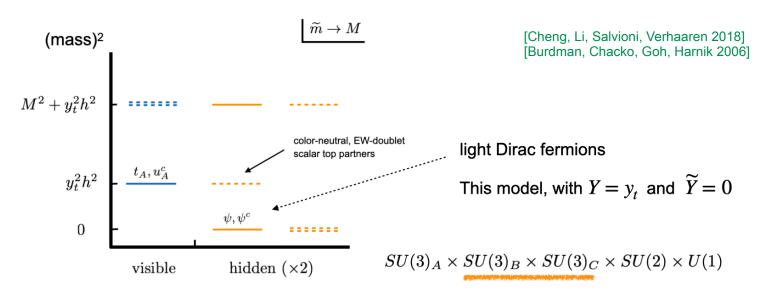
Integrate out heavy fermions Q

$$\mathcal{L}_{\mathrm{EFT}} \sim (\overline{\psi}_R \boldsymbol{Y}^\dagger \boldsymbol{M}^{-2} \boldsymbol{Y} \gamma^\mu \psi_R) \; (iH^\dagger D_\mu H) + (\overline{\psi}_L \widetilde{\boldsymbol{Y}}^\dagger \boldsymbol{M}^{-2} \widetilde{\boldsymbol{Y}} \gamma^\mu \psi_L) \; (iH^\dagger D_\mu H) \\ - \overline{\psi}_L \omega \psi_R + \overline{\psi}_L \widetilde{\boldsymbol{Y}}^\dagger \boldsymbol{M}^{-1} \boldsymbol{Y} \psi_R |H|^2$$
 Z portal (dim-6)

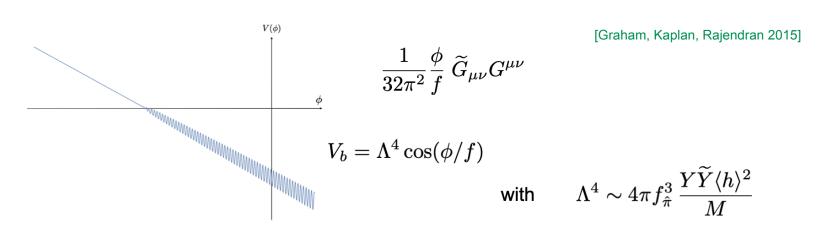
• N=2 flavors: dark pions $\hat{\pi}_a \sim \overline{\psi} i \sigma_a \gamma_5 \psi$

$$J^{PC} = 0^{-+}$$

composite ALP

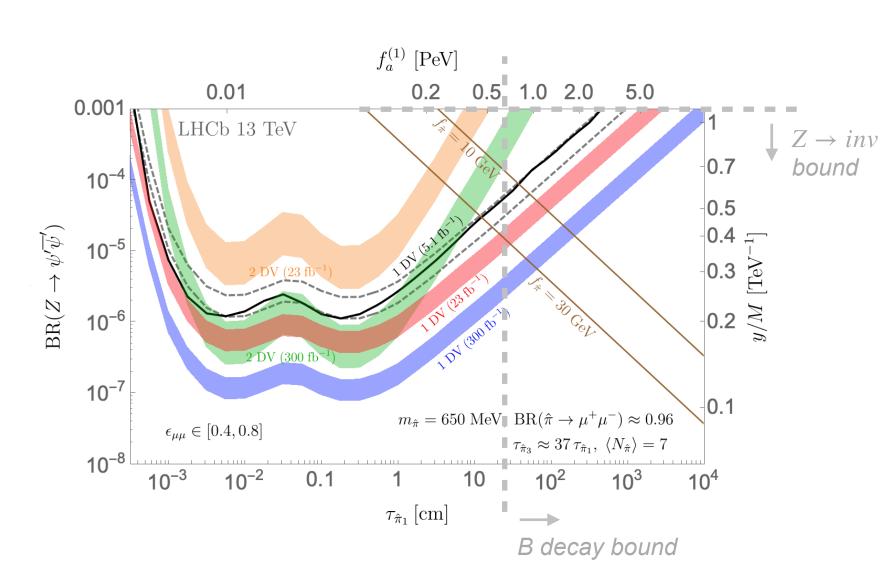

$$\mathcal{L}_{\text{eff}} \supset -\frac{\partial_{\mu}a}{f_a} \sum_f c_f \bar{f} \gamma^{\mu} \gamma_5 f$$

$$c_f = T_L^3(f)$$
 isospin-violating couplings to SM fermions


$$f_a \sim \frac{M^2}{Y^2 f_{\hat{\pi}}} = 1 \text{ PeV} \left(\frac{M/Y}{\text{TeV}}\right)^2 \left(\frac{1 \text{ GeV}}{f_{\hat{\pi}}}\right)$$

Ultraviolet motivations

"Tripled Top" framework for neutral naturalness: accidental SUSY of the spectrum



Non-QCD version of the relaxion: new fermions generate backreaction potential

Dark showers @ LHCb

 $Z \rightarrow$ dark jets probes new direction in parameter space

