Confronting Dark Matter with Dirac Neutrinos

Light Dark World 2023

Dibyendu Nanda **Korea Institute for Advanced Study**

JCAP10(2021)002, PRD107(2023)1,015015 In collaboration with

A. Biswas, D. Borah, N. Das

INSTITUTE FOR ADVANCED STUDY

- The existence of dark matter, neutrino mass, the nature of neutrinos, matter-antimatter asymmetry.... are the unsolved puzzles of nature.
- Null results in direct detection experiments pushed the thermal WIMP scenarios in tension.
- Many different possibilities have been proposed to evade such strong DD bounds.
- We need to look for other possibilities to probe dark matter

• The existence of dark matter, neutrino mass, the nature of neutrinos, matter-antimatter asymmetry.... are the unsolved puzzles of nature.

Dirac or Majorana?

• No positive signal so far in $0\nu\beta\beta$ experiments. Are they Dirac particles?

• The existence of dark matter, neutrino mass, the nature of neutrinos, matter-antimatter asymmetry.... are the unsolved puzzles of nature.

Dirac or Majorana?

• No positive signal so far in $0\nu\beta\beta$ experiments. Are they Dirac particles?

• The existence of dark matter, neutrino mass, the nature of neutrinos, matter-antimatter asymmetry.... are the unsolved puzzles of nature.

Dirac or Majorana?

• No positive signal so far in $0\nu\beta\beta$ experiments. Are they Dirac particles?

What if neutrinos are Dirac particles?

- Like other charged fermions, there will be ν_R as light as ν_I .
- If ν mass is generated via SM-like Higgs through $y_H \overline{L} H \nu_R$, then $y_H \approx 10^{-12}$.

- Tiny ν masses via Dirac seesaw (Logan+2009, Ma+2015, Valle+2016, Baek+2019 ...) and loop induced processes (Babu+1989, Ma+2012 ...)
- ν_R can act as dark radiation and be important from cosmological point of view.
 - Effective number of relativistic DOF:
- $N_{\rm eff} = 2.99^{+0.34}_{-0.33}$ (PLANCK 2018); $N_{\rm eff}^{SM} = 3.046$; $\Delta N_{\rm eff} = 0.285$ at 2σ .

Difficult to know whether they are thee or not.

$$: N_{\text{eff}} = \frac{\rho_{rad} - \rho_{\gamma}}{\rho_{\nu_L}}$$

What if neutrinos are Dirac particles?

• Like other charged fermions, there will be ν_R as light as ν_L .

What if neutrinos are Dirac particles?

• Like other charged fermions, there will be ν_R as light as ν_L .

the production of DM and ν_R are connected?

SM singlet ν_R The dark matter (ψ)

$10^{-12} \approx y_H \overline{L} \tilde{H} \nu_R + \lambda_{H\phi} (H^{\dagger} H) (\phi^{\dagger} \phi) + y_{\phi} \overline{\psi} \phi \nu_R$

No direct connection between dark matter and RHNs to SM particles.

the production of DM and ν_R are connected?

$10^{-12} \approx \frac{y_H \overline{L} H \nu_R}{V_R} + \frac{\lambda_{H\phi}}{H} (H^{\dagger} H) (\phi^{\dagger} \phi) + y_{\phi} \overline{\psi} \phi \nu_R$

• ϕ is the only portal between DS and SM bath.

• Don't have a strong direct detection bound.

Important parameters:

- ϕ is the only portal between DS and SM bath.
- No Direct detection bound due to loop suppression.
- Thermal or non-thermal production of dark sector particles.
- The presence of relic u_R can significantly contribute to $\Delta N_{
 m eff}$.
- Free streaming length of DM can be significantly affected.

$10^{-12} \approx \frac{y_H \bar{L} \tilde{H} \nu_R}{V_R} + \frac{\lambda_{H\phi}}{M_{H\phi}} (H^{\dagger} H) (\phi^{\dagger} \phi) + y_{\phi} \bar{\psi} \phi \nu_R$

Important parameters:

- Case I: $\lambda_{H\phi}, y_{\phi} \approx \mathcal{O}(1)$
- Case II: $\lambda_{H\phi} \approx \mathcal{O}(1), y_{\phi} < < \mathcal{O}(1)$ • Thermal or non-thermal production of dark sector particles.
- Case III: • The presence of relic u_R can significantly contribute to $\Delta N_{
 m eff}$. $\lambda_{H\phi} < < \mathcal{O}(1), y_{\phi} < < \mathcal{O}(1)$ • Free streaming length of DM can be significantly affected.

$10^{-12} \approx \frac{y_H}{L} \tilde{H} \nu_R + \frac{\lambda_{H\phi}}{H} (H^{\dagger} H) (\phi^{\dagger} \phi) + y_{\phi} \overline{\psi} \phi \nu_R$

- ϕ is the only portal between DS and SM bath.
- No Direct detection bound due to loop suppression.

Thermalised Case:

• ϕ will thermalise with SM plasma due its interaction with H.

• Both u_R and ψ will thermalise through their contact with $\phi.$

ullet Once, ϕ decouples, both u_R and ψ becomes disconnected from the bath.

$$(T) = \frac{g_{\star}^{1/2}(T)\sqrt{g_{\rho}(T)}}{g_{s}(T)} \right)$$

$$(Y^{eq})^2]$$
,
 $(Y^{eq})^2 = (Y^{eq})^2 = \left(\xi = \frac{T_{\nu_R}}{T}\right)$

Thermalised Case:

A.Biswas, D. Borah, DN JCAP2021

Indirect probe through ΔN_{eff} :

- $\psi \psi h$ vertex generates at one loop level. σ_{SI} is suppressed.
- No possibility to detect in direct detection experiments.
- However, measurement of $\Delta N_{
 m eff}$ opens the possibility of probing such scenarios.
- Future CMB experiments will probe such model severely.

A.Biswas, D. Borah, DN JCAP2021

Non-thermal Case:

- What is DM and ν_R are connected through tiny coupling: $y_{\phi}\overline{\psi}\phi\nu_R$
- Then there can be three different situations depending on $\lambda_{H\phi}(H^{\dagger}H)(\phi^{\dagger}\phi)$:
 - Case I: ϕ decays to DM and ν_R from the thermal bath.
 - Case II: ϕ freezes out from the thermal bath and then decays.
 - Case III: ϕ was never in the thermal bath but produced non-thermally from Higgs decay.

A. Biswas, D. Borah, N. Das, DN PRD2023

10

- ϕ can be produced from the decay or annihilation of SM Higgs.
- Amount of $\Delta N_{
 m eff}$ is sensitive to the production time.
- It also depends on the injected energy to DM from decaying particles.

 ϕ was never in the thermal bath but produced non-thermally from Higgs decay.

$$\begin{aligned} \frac{\partial f_{\phi}}{\partial t} &- \mathscr{H} p_1 \frac{\partial f_{\phi}}{\partial p_1} = C^{h \to \phi \phi^{\dagger}} + C^{hh \to \phi \phi^{\dagger}} + C^{\phi \to h} \\ \frac{dY_{\psi}}{dr} &= \frac{g_{\phi} \beta}{r \mathscr{H} s} \frac{\Gamma_{\phi} m_{\phi}}{2\pi^2} \int \frac{\left(\mathscr{A} \frac{m_0}{r}\right)^3 \xi^2 f_{\phi}(\xi, r)}{\sqrt{\left(\xi \mathscr{A} \frac{m_0}{r}\right)^2 + m_{\phi}^2}} d\xi \\ \frac{d\widetilde{Y}}{dr} &= \frac{g_{\phi} \beta}{r \mathscr{H} s^{4/3}} \langle E\Gamma \rangle \frac{1}{2\pi^2} \int_0^\infty \left(\mathscr{A} \frac{m_0}{r}\right)^3 \xi^2 f_{\phi}(\xi, r) \end{aligned}$$

11

Non-thermal Case:

Non-thermal Case:

Parameters				0 \mathbf{h}^2	ΔΝΙ	
$m_{\phi}(\text{GeV})$	$\lambda_{H\phi}$	y_{ϕ}	$m_{\psi}(\text{keV})$	32DMu-	$\Delta N_{\rm eff}$	FSL(Mpc)
10	4.8×10^{-9}	10^{-10}	3.42	0.12	$2.7 imes 10^{-1}$	9.42
50	4.8×10^{-9}	10^{-10}	5.63	0.12	3.6×10^{-1}	15.5

A. Biswas, D. Borah, N. Das, DN PRD2023

TABLE III: Table for case III

- We have studied the possibility where the Dirac nature of neutrinos can impact the DM parameter space through their contribution to $\Delta N_{
 m eff}.$
- ullet Discussed the possibility where DM and u_R both are connected to the SM through a singlet scalar ϕ .
- We have discussed both thermal and non-thermal productions.
- ullet In case of non-thermal production, the FSL of DM and $\Delta N_{
 m eff}$ can be correlated.
- Depending upon the choice of the parameters, FSL can rule out DM all the way up to a few hundred keV.

Conclusion

Thank you for your attention.

- ν_R can have additional interactions and can be thermalised or it can be produced from the non-thermally just like DM particles .
- In both cases, it will contribute to the total radiation energy density.

If thermalised,
$$\Delta N_{\text{eff}} = N_{\nu_R} \left(\frac{g_{*s}(T_{\nu_L})}{g_{*s}(T_{\nu_R})} \right)^{4/3}$$

- If, it is produced non-thermally, it depends on the particular process.
- For example, from SM-like Higgs via $y_H \approx 10^{-12}$, $\Delta N_{\rm eff} = 7.5 \times 10^{-12}$ Luo, Rodejohann and Xu, 2021
- What if the production of DM and ν_R are connected?

- ν_R can be thermalised or it can be produced from the nonthermally just like DM particles.
- In both cases, it will contribute to the total radiation energy density.

If thermalised,
$$\Delta N_{\text{eff}} = N_{\nu_R} \left(\frac{g_{*s}(T_{\nu_L})}{g_{*s}(T_{\nu_R})} \right)^{4/3}$$

- If, it is produced non-thermally, the amount depends on the particular process.
- For example, from SM-like Higgs via $y_H \approx 10^{-12}$, $\Delta N_{\rm eff} = 7.5 \times 10^{-12}$ Luo, Rodejohann and Xu, 2021
- What if the production of DM and ν_R are connected?

SM singlet scalar (ϕ)

SM singlet ν_R

Particles	$SU(3)_c \times SU(2)_L \times U(1)_Y$	\mathbb{Z}_4
ℓ^{lpha}_L	$(1, 2, -\frac{1}{2})$	i
e_R^{lpha}	(1,1,-1)	i
ν_R^{lpha}	(1, 1, 0)	i
ψ	(1,1,0)	-1
ϕ	(1, 1, 0)	i

The dark matter (ψ)

SM singlet scalar (ϕ)

SM singlet ν_R

$\mathcal{L}_{\text{fermion}} = i \,\overline{\nu}_R \,\gamma^\mu \,\partial_\mu \,\nu_R \,+\, i \,\overline{\psi} \,\gamma^\mu \,\partial_\mu$

Similarly, the scalar Lagrangian of the model is

$$\mathcal{L}_{\text{scalar}} = (D_{H\mu}H)^{\dagger} (D_{H}^{\mu}H) + (\partial_{\mu}\phi)^{\dagger} (\partial^{\mu}\phi) - \left[-\mu_{H}^{2} (H^{\dagger}H) + \lambda_{H} (H^{\dagger}H)^{2} + \mu_{\phi}^{2} (\phi^{\dagger}\phi)^{2} + \lambda_{H\phi} (H^{\dagger}H)(\phi^{\dagger}\phi) + \lambda_{\phi}' (\phi^{4} + (\phi^{\dagger})^{4}) \right],$$

The dark matter (ψ)

$$\psi - m_{\psi}\overline{\psi}\psi - \left(y_H\overline{\ell}\,\widetilde{H}\,\nu_R + y_\phi\overline{\psi}\,\nu_R\phi + \text{h.c.}\right)$$

27

Case I: $\lambda_{H\phi} \approx \mathcal{O}(1)$

(b) Thermalisation processes of ϕ with the SM bath.

A.Biswas, D. Borah, DN JCAP2021

Ø

Case I: $\lambda_{H\phi}, y_{\phi} \approx \mathcal{O}(1)$

 $y_{\phi} = 0.2, \lambda_{H\phi} = 10^{-3}$

1	-
	1
	-
	-
	_
804 80%	
	-
	-
	-
	2
	~
	-
	-
	_
	-
	-
	10
	_
I	

Case II: ϕ freezes out from the thermal bath and then decays: $\lambda_{H\phi} \approx 10^{-4}, y_{\phi} < < 1$

TABLE II: Table for case II

Parameters				0 \mathbf{h}^2	AN	ECI (Mr.c)	
m_{o}	$_{\phi}({ m GeV})$	$\lambda_{H\phi}$	y_{ϕ}	$m_{\psi}(\text{keV})$	$\Omega_{\rm DM}$ m -	$\Delta N_{ m eff}$	F SL(Mpc)
	1000	$5 imes 10^{-5}$	10^{-10}	146	0.12	$5.8 imes 10^{-2}$	2.625
	500	$5 imes 10^{-5}$	10^{-10}	275	0.12	2.2×10^{-2}	1.146
	1000	$1.6 imes 10^{-4}$	10^{-9}	820	0.12	$7.2 imes 10^{-4}$	0.071
	500	10^{-4}	10^{-9}	550	0.12	$6.5 imes 10^{-4}$	0.077

A. Biswas, D. Borah, N. Das, DN PRD2023

Case I: ϕ decays to DM and ν_R from the thermal bath: $\lambda_{H\phi} \approx \mathcal{O}(1), y_{\phi} < < 1$

I	Parameters	3	0 1^2	ΔN_{eff}	FSL(Mpc)
$m_{\phi}(\text{GeV})$	y_{ϕ}	$m_{\psi}(\text{keV})$	MDMn-		
10	5×10^{-10}	81	0.12	$1.6 imes 10^{-4}$	0.0141
50	5×10^{-10}	440	0.12	2.9×10^{-5}	0.0030
50	10^{-9}	110	0.12	1.2×10^{-4}	0.0105

A. Biswas, D. Borah, N. Das, DN PRD2023

Invisible Higgs decay and $\lambda_{H\phi}$:

Boltzmann Equations: Case-I

 $\frac{dY_{\psi}}{dx} = \frac{\beta}{x\mathcal{F}}$

 $\frac{d\widetilde{Y}}{dx} = \frac{1}{\mathcal{H}s}$

 $\beta = \begin{bmatrix} 1 \end{bmatrix}$ $\langle E\Gamma \rangle = g_{\psi}g_{\nu_R} \frac{|\mathcal{A}|}{-}$

Boltzmann Equations: Case-II

$$\frac{dY_{\phi}}{dx} = \frac{\beta s}{\mathcal{H}x} \left(-\langle \sigma v \rangle_{\phi\phi^{\dagger} \to X\bar{X}} \left((Y_{\phi})^2 - (Y_{\phi}^{\text{eq}})^2 \right) - \frac{\Gamma_{\phi}}{s} \frac{K_1(m_{\phi}/T)}{K_2(m_{\phi}/T)} Y_{\phi} \right),$$

$$\frac{dY_{\psi}}{dx} = \frac{\beta}{x\mathcal{H}}\Gamma_{\phi}\frac{K_{1}(x)}{K_{2}(x)}Y_{\phi},$$
$$\frac{d\widetilde{Y}}{dx} = \frac{\beta}{\mathcal{H}s^{1/3}x}\langle E\Gamma\rangle Y_{\phi}.$$

$$\frac{\beta}{\mathcal{H}}\Gamma_{\phi}\frac{K_1(x)}{K_2(x)}Y_{\phi}^{\mathrm{eq}},$$

$$\frac{\beta}{2s^{1/3}x} \langle E\Gamma \rangle Y_{\phi}^{\rm eq},$$

$$+\frac{Tdg_s/dT}{3g_s}\bigg],$$

$$\frac{\mathcal{M}|_{\phi\to\bar{\nu}_R\psi}^{\prime 2}}{32\pi}\frac{(m_\phi^2-m_\psi^2)^2}{m_\phi^4}.$$

Distribution functions of ϕ

(i) Case I:
$$f_{\phi}(k_1) = e^{-E_{k_1}}$$

(ii) Case II: we can find f_{ϕ}
by using

$$\frac{\partial f_{\phi}}{\partial t} - \mathcal{H}k_1$$

(iii) Case III: we can find $f_{\phi}(k_1)$ by using

$$\frac{\partial f_{\phi}}{\partial t} - \mathcal{H}k_1 \frac{\partial f_{\phi}}{\partial k_1} = C^{h \to \phi \phi}$$

 E_{k_1}/T (k_1) after the freeze-out of ϕ

$$\frac{\partial f_{\phi}}{\partial k_1} = C^{\phi \to \psi \bar{\nu}_R}.$$
 (26)

 $\phi^{\dagger} + C^{hh \to \phi\phi^{\dagger}} + C^{\phi \to \bar{\nu}_R \psi}.$

(27)

Boltzmann Equations: Case-III

$$\begin{aligned} \frac{\partial f_{\phi}}{\partial t} - \mathcal{H}p_1 \frac{\partial f_{\phi}}{\partial p_1} &= C^{h \to \phi \phi^{\dagger}} + C^{hh \to \phi \phi^{\dagger}} + C^{\phi \to \bar{\nu}_R \psi}, \\ \frac{dY_{\psi}}{dr} &= \frac{g_{\phi} \beta}{r \mathcal{H}s} \frac{\Gamma_{\phi} m_{\phi}}{2\pi^2} \int \frac{\left(\mathcal{A}\frac{m_0}{r}\right)^3 \xi^2 f_{\phi}(\xi, r)}{\sqrt{\left(\xi \mathcal{A}\frac{m_0}{r}\right)^2 + m_{\phi}^2}} d\xi, \\ \frac{d\widetilde{Y}}{dr} &= \frac{g_{\phi} \beta}{r \mathcal{H}s^{4/3}} \langle E\Gamma \rangle \frac{1}{2\pi^2} \int_0^{\infty} \left(\mathcal{A}\frac{m_0}{r}\right)^3 \xi^2 f_{\phi}(\xi, r) d\xi, \end{aligned}$$

Free streaming length:

where T_{eq} is the temperature of the universe at the time of matter-radiation equality while $T_{\rm prod}$ denotes the temperature during maximum production of DM. The average velocity of

7

DM ($\langle v(T) \rangle$) at a temperature T can be expressed as

$$\langle v(T) \rangle = \frac{\int \frac{p_1}{E_1} \frac{d^3 p_1}{(2\pi)^3} f_{\psi}(p_1, T)}{\int \frac{d^3 p_1}{(2\pi)^3} f_{\psi}(p_1, T)}$$

$$\left| \frac{dT}{dT} \right| \frac{dt}{dT} dT,$$
 (17)

(18)

Scan for case-II

Scan for case-III

