Status of the initial ALPS II science run

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

University of Southern Denmark

Axion and Axion-Like particles

Motivation

- Solution for SM unsolved questions:
 - What is the nature of dark matter (DM)?
 - Why is the electric dipole moment of the neutron so tiny?
 - Axions are a consequence of the Peccei-Quinn symmetry to explain $\theta=0$.

N

$$L_{\alpha\gamma} = g_{\alpha\gamma\gamma}\phi_{\alpha}\overrightarrow{E}\cdot\overrightarrow{B_{0}}$$

couplings to Standard Model constituents

$$\beta$$
 γ γ γ

Sikivie effect

$$P(\alpha \rightarrow \gamma) \propto (g_{\alpha\gamma\gamma}B_0L)^2$$

Strengths

- ALPS II designed to improve sensitivity compared to ALPS I by a factor of ~3000
 - Exploring uncharted territory in parameter space, beyond astrophysical constraints
 - Checking axion explanation of astrophysical anomalies

The axion factory

4

The axion factory

DES

HETerodyne: Coherent detection

A very sensitive technique

- Interfere regenerated field (ν_{sig}) with laser ($\nu_{sig} + f_1$) •
- Demodulate signal at defined frequency •
- Sum the amplitude of the Beat-note over a long time •

HETerodyne: Coherent detection

A very sensitive technique

- Interfere regenerated field (ν_{sig}) with laser ($\nu_{sig} + f_1$)
- Demodulate signal at defined frequency
- Sum the amplitude of the Beat-note over a long time

 $V(t) = GP_{sig} + GP_{LO} + 2G_{\sqrt{P_{sig}}}P_{LO}cos(2\pi f_1 t + \Delta\phi) \qquad \Delta\phi = \phi_{sig} - \phi_{LO}$

Initial science run

May 23rd to May 31st

ALPS II's initial science run scheme

Phase stability as a key detection point

- Demodulation signal must be coherent with the measured signal
- LO must be coherent with regenerated field
 - HPL must be coherent with LO over the full run

Resonant Enhancement

- Power build-up only when the HPL frequency is resonant within the RC
- Cannot directly interfere HPL and LO fields → too much stray light!
- Use of a reference laser with cascaded phaselocked loops as a "go-between" → HPL and LO never see each other directly

Heterodyne function

Preliminary results

Successfully acquired data from May 23rd to 31st

- System showed very good performance
 - ~ 45 hours of high-quality data
- Open shutter periods:
 - Reliable reconstruction of phase evolution
 - Monitor for some calibration parameters

Preliminary sensitivity estimate

Check our poster for more details!

Conclusion

- Axions and Axion-like particles are well-motivated BSM particles
- LSW: Checking astrophysical observations in a model-independent way
- ALPS II will probe the axion hypothesis using the HET first and then a photon counting approach
- The initial science run data improves the limits by a factor of 100 with to respect previous LSW experiments
- · A new data taking is expected in few weeks aiming to be limited by shot-noise only

• The design sensitivity will be reached in 2024 when the full setup of ALPS II will be installed

Backup

ALPS II Strengths

- **ALPS II** designed to improve sensitivity compared to ALPS I by a factor of ~3000
 - Exploring uncharted territory in parameter space, beyond astrophysical constraints
- Checking axion explanation of astrophysical anomalies

- Astrophysical constraints
 - Non-observation of BSM energy loss of Horizontal Branch (HB) stars in globular clusters
 - Non-observation of conversion photons into axions in astorophysical environments
- Astrophysical anomalies
 - Best fit of energy loss of (HB) starts hints at BSM contribution
 - Observed spectra of blazers hint at anomalous transparency of Universe from TeV photons

ALPS II achievement

- Optic R&D from 2012
- Installation of ALPS II began in 2019

- In March 2022 the magnet string was successfully tested
- Completion of the whole installation in September 2022

ALPS II achievement

World-record

- Longest storage time Fabry Perot cavity ever!
- Length: 124.6m, FSR: 1.22 MHz
- Storage time: 7.04 ms

Laser Off

TES Transition Edge Sensor

- Using a superconducting Transition Edge Sensor (TES) operated at about 100 • mK.
- Already have demonstrated: ٠
 - Low-backgrounds (µHz) ٠
 - Good energy resolution (~10%) ٠
 - Long-term stability (~20 days) ٠

60

Axions: non-collider and colliders

Axion-photon coupling vs axion mass

HETerodyne: Coherent detection

Advantages & costs

- The higher the LO power, the shorter the time it takes for the signal to exceed the expected noise limit.
- If the P_{LO} is large enough, the system noise is dominated by the shot-noise
 - SNR no longer depend on the LO power

$$SNR \propto \frac{\sqrt{P_{sig}P_{LO}}}{\sqrt{P_{LO}}} = \sqrt{P_{sig}}$$

Costs:

- Keep $\Delta \phi$ constant
- Keep Δf constant

Signal extraction

In-phase and quadrature demodulation

• $f_s > 2 \times f'_0$

A combination of the I and Q function measure the photon flux

$$x_{sig}(t) = A\cos(2\pi f_{sig}t + \phi)$$

$$\begin{cases} I = x_{sig} \cos(2\pi f_{sig}t) = A \cos(2\pi f_{sig}t + \phi) \cos(2\pi f_{sig}t) \\ Q = x_{sig} \sin(2\pi f_{sig}t) = A \cos(2\pi f_{sig}t + \phi) \sin(2\pi f_{sig}t) \\ I = \frac{A}{2} [\cos(\phi) + \cos(4\pi f_{sig}t + \phi)] \\ Q = \frac{A}{2} [\sin(\phi) + \cos(4\pi f_{sig}t + \phi)] \end{cases}$$

$$z = I^2 + Q^2 = \frac{A^2}{4} \propto N_{\gamma}$$

From I[n] and Q[n]

$$z[n] = \frac{(\sum_{i}^{N} I[n])^{2} + (\sum_{i}^{N} Q[n])^{2}}{N^{2}}$$

Number of photons

$$N_{\gamma} = \frac{z[n]}{G^2 P_{LO} h\nu}$$

Signal

DESY.

Number of photons

Noise

Number of photons

Technical noises for HET mitigated by increasing the LO power

Signal + Noise

ALPS II's initial science run scheme

ALPS II's initial science run scheme

Open shutter data comparison

DESY.

32