

Corsika 8

- Input & Steering -

Dominik Baack

Settings vs Compilation

Which fundamental settings should be
controllable during runtime without

recompilation?

Still open for discussion

- Input File(s) -

At the moment YAML
- Flexible with clear structure
- Human r/w

- Requires very clear documentation
 of all possible settings

corsika8

process

proposal FLUKA

E_cut: 0.6

...

E_cut: DATA

...

min_version: v8.0.0

- Command Line -

Precedence over file
- Direct control
 corsika8.process.proposal.e_cut=0.9

- Subtree patching with integrated yaml
 corsika8.process.FLUKA={…}

corsika8

process

proposal FLUKA

E_cut: 0.9

...

E_cut: DATA

...

min_version: v8.0.0

- Abstraction & Synchronization Layer -

Singlet SControl

Proposal

...CL11 YAML-CPP Python?

C’tor: e_cut = Scontrol.register<Proposal>(name, desc, unit, required, default, ...)

Function / where needed: e_cut.get()
 Scontrol.get<Proposal>(“name”, ...)

Input Stage

Global / Singleton

Thread Barrier / Mutex

- Abstraction -

Why register?
→ Information's for user -h or –dump_config for example files

Why no callbacks?
→ Cleanup and rebuilding required during parameter change, error
prone better to be kept in d’tor

Why templates?
→ Avoid name duplication for input variables
→ Classes needs to inherit from some baseclass to set name=”…”
→ Fallback typeid.name but compiler dependent

Interlude
- OpenMPI Parallelization -

Fixed vs Elastic

- Allocation of X Cores on Y Nodes
- Calculate predefined task
- Finish Jobs after calculations are done

- Allocation of available hardware
- Jobs wait active for tasks
- Finish Jobs wait for new tasks

- hardly compatible with modern principles

- Easy to implement

- flexible and follows modern principles

- Harder to implement

- Abstraction & Synchronization Layer -

How to handle fixed parallelization?
→ nothing special, provide steering information from the start

How to handle elastic parallelization?
→ Initialize instance as Controller or Responder with minimal steering data
→ Rebuild everything for each new set of control parameters
→ optimization possibilities for later if really required

while(sync.keepAlive())
 SControl.get_data(sync)
 corsika8.main()

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8

