Leptogenesis with low-energy CP-violation

by Kristian Moffat

A project in collaboration with Silvia Pascoli, Serguey Petcov and Jessica Turner

IPPP, Durham University

Low-energy CP-violation and leptogenesis

- ► Leptogenesis is a mechanism to explain the baryon asymmetry of the Universe (BAU) with theories of neutrino properties
- ► CP-violation is necessary (Sakharov)
- ▶ Type-I seesaw implementation allows CP-violation from: PMNS phases $(\delta, \alpha_{21}, \alpha_{31})$, R-matrix (Casas-Ibarra parametrisation)
- ▶ When is the CP-violation from the PMNS matrix sufficient to produce the observed BAU?
- ▶ We restrict ourselves to decays of heavy neutrinos in type-I seesaw in a nonresonant regime

$10^9 < M_1 \text{ (GeV)} < 10^{12}$

- ► Revisiting the scenario of [arXiv:hep-ph/0611338]
- ▶ We solve density matrix equations (generalisation of Boltzmann equations):

$$\begin{split} \frac{dn_{N_i}}{dz} &= -D_i(n_{N_i} - n_{N_i}^{\text{eq}}) \\ \frac{dn_{\alpha\beta}}{dz} &= \sum_i \left(\epsilon_{\alpha\beta}^{(i)} D_i(n_{N_i} - n_{N_i}^{\text{eq}}) - \frac{1}{2} W_i \left\{ P^{0(i)}, n \right\}_{\alpha\beta} \right) \\ &- \frac{\Im(\Lambda_{\tau})}{Hz} \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, n \right] \right]_{\alpha\beta} \\ &- \frac{\Im(\Lambda_{\mu})}{Hz} \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, n \right] \right]_{\alpha\beta} \end{split}$$

$10^9 < M_1 (GeV) < 10^{12}$

- ► Thorough exploration of the parameter space in models with 2 or 3 heavy Majorana neutrinos
- ▶ Dirac and Majorana phases (together or separately) are sufficient to produce the observed BAU

$$M_1 \ll 10^9 \text{ GeV}$$

▶ At "intermediate" scales, for successful leptogenesis (thermal, nonresonant) consistent with data, we must fine-tune the light neutrino masses

$$\frac{m^{\text{tree}}}{m^{\text{tree}} + m^{1-\text{loop}}} \gg 1 \tag{1}$$

► Imposes a structure on the *R*-matrix [arXiv:1804.05066 [hep-ph]]

$$R \approx \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ \pm iR_{22} & R_{22} & R_{23} \\ -R_{22} & \pm iR_{22} & \pm iR_{23} \end{pmatrix}$$
 (2)

 \triangleright Simple "real R" solutions are insufficient

$M_1 \ll 10^9 \text{ GeV}$

 $M_1 = 10^6 \text{ GeV}$ blue/green (NO) red/orange (IO)

- ▶ Light masses prefer to be larger (than in previous case) $\sim 0.1 \text{ eV}$
- ▶ Dirac and Majorana phases individually may be sufficient for observed BAU

$$M_1 \gg 10^{12} \text{ GeV}$$

▶ Purely low energy CP-violation imposes $\text{Tr}\epsilon^{(1)} = 0$

▶ Under these conditions flavour effects remain dominant well above $M_1 = 10^{12}$ GeV (where they usually become negligible)

► The relative dominance is sufficient to provide the baryon asymmetry of the Universe

$M_1 \gg 10^{12} \text{ GeV}$

- Majorana phases individually may be sufficient for observed BAU
- ▶ Dirac phase is insufficient without also introducing $\mathcal{O}(100)$ fine-tuning

Summary

- ► Thermal nonresonant leptogenesis may be successful with purely PMNS phase CP-violation over a wide range of scales $10^6 < M_1$ (GeV) $< 10^{13}$
- ▶ Below 10⁹ GeV requires significant fine-tuning in the masses