

The search for neutrinoless double beta decay $(0\nu\beta\beta)$ with GERDA

Chloe Ransom for the GERDA collaboration

University of Zurich

4th September 2018

Neutrinoless double-beta decay $(0\nu\beta\beta)$

- Would demonstrate Majorana nature of neutrino
- Hypothetical lepton number violating process
- Allowed for some nuclei with $2\nu\beta\beta$ decay
- Signature in calorimeters would be peak in electron spectrum at $Q_{\beta\beta}$

Searching for $0\nu\beta\beta$ with GERDA

- GERDA searches for $0\nu\beta\beta$ of $^{76}{\rm Ge}$ at LNGS
- Diodes isotopically enriched up to 88%, act as both source and detector
- 36 kg enriched detectors, two types: Coaxial/BEGe
- Operated in LAr \rightarrow scintillation light as veto

Background reduction techniques

- \star Signal! Single-site event
- ★ Cherenkov water veto for muons
- \bigstar LAr scintillation veto for $\gamma,~\beta$
- ★ Detector anti-coincidence cut
- ★ Pulse shape discrimination (PSD) for multi-site and surface α events

 $\begin{array}{rl} & \mbox{Background index at } \mathsf{Q}_{\beta\beta} \colon \\ \mbox{Coax:} & 5.7^{+4.1}_{-2.6} \cdot 10^{-4} \ \mbox{cts}/(\mbox{keV} \cdot \mbox{kg} \cdot \mbox{yr}) \\ \mbox{BEGe:} & 5.6^{+3.4}_{-2.4} \cdot 10^{-4} \ \mbox{cts}/(\mbox{keV} \cdot \mbox{kg} \cdot \mbox{yr}) \end{array}$

Background-free regime!

Energy spectrum

- After muon veto, detector anti-coincidence cuts
- Compton continuum suppressed
- Remaining features: $2
 u\beta\beta$, 40 K, 42 K, α

Unblinded spectrum

Frequentist analysis

- Exposure $58.9 \text{ kg} \cdot \text{yr} (+23.6 \text{ kg} \cdot \text{yr} \text{ Phase I})$
- Best fit: no signal
- $T_{1/2}^{0\nu} > 0.9 \cdot 10^{26} \, {\rm yr}$ (90% C.L.)
- Sensitivity for limit setting: $1.1\cdot 10^{26}\, \rm yr$ (90% C.L.)

Conclusion

- GERDA continues to operate smoothly
- Exposure 58.9 kg· yr (+23.6 kg· yr Phase I), c.f. aim of 100 kg· yr
- New limit on half-life of $0\nu\beta\beta$ -decay for $^{76}{\rm Ge:}$ $T_{1/2}^{0\nu}>0.9\cdot10^{26}\,{\rm yr}$ (90% C.L.)
- World's best sensitivity $> 10^{26}\,{\rm yr}$
- Future: ton-scale experiment, LEGEND

See poster at lunch for more details

C. R. is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896.

Bonus slides

C. Ransom (UZH)

GERDA experiment

4th September 2018 8 / 7

E

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

$0\nu\beta\beta$: isotopes

- Different isotope choice for different experimental approaches
- Various considerations: natural abundance/ enrichment, detector technology, resolution etc.
- If signal, potential complementarity between experiments for determining process mechanism

lsotope	Natural abundance	Q_{etaeta} (keV)
⁴⁸ Ca	0.2%	4263
76 Ge	7.6%	2039
82 Se	9.2%	2998
96 Zr	2.8%	3348
^{100}Mo	9.6%	3035
^{116}Cd	7.6%	2813
130 Te	34.1%	2527
^{136}Xe	8.9%	2459
^{150}Nd	5.6%	3371

Detecting $0\nu\beta\beta$

- Signature in calorimeters would be monoenergetic line, Q_{ββ}, in energy spectrum of emitted electrons
- Sensitivity to half-life of decay depends on background
- Background limited:

$$T_{1/2}^{0\nu}\propto\epsilon\sqrt{\frac{Mt}{BI\cdot\Delta E}}$$

$$T_{1/2}^{0\nu}\propto\epsilon Mt$$

where ϵ : efficiency; Mt: exposure; BI: background events per kg·yr·keV; ΔE : resolution

Detector types

Semi-coaxial Ge detector (Coax)

- 7 enriched detectors
- 3 non-enriched detectors
- Total enriched mass 15.6 kg

Broad Energy Ge detector (BEGe) [The European Physical Journal C 75.2 (2015): 39.]

- 30 enriched detectors
- Superior pulse shape discrimination (PSD), energy resolution
- Total enriched mass 20.0 kg

Ge detector signals

- Ionising radiation... ionises!
- Number of charge carriers proportional to energy deposition
- Electron/hole pairs drift in electric field
- Shockley-Ramo theorem gives charge/current at readout electrode
- Different electric field for Coax/BEGe detectors

C. Ransom (UZH)

Data taking

Phase II data taking since December 2015

Events with energy $Q_{\beta\beta}\pm 25 \text{ keV}$ 'blinded' before analysis and cuts finalised

June 2016: 10.8 kg·yr ("PhIIa") • Published in **Nature 554 (2017)** June 2017: 23.2 kg·yr ("PhIIa + PhIIb") • Published in **PRL 120 (2018)** June 2018 (this presentation): 58.9 kg·yr

Energy scale calibration

- Knowledge of energy scale, resolution vital for all physics analyses
- Energy scale calibrated by ²²⁸Th sources ea. 7-10 days
- Remotely lowered to three positions from above cryostat for \approx 2h \rightarrow all detectors exposed
- Source Insertion System (SIS): two independent measurement systems determine position of source to ±1 mm

Energy calibration sources

[Journal of Instrumentation 10.12 (2015): P12005.]

- 3 low neutron emission 228 Th sources $\sim 10^{-6} \text{ n/(s·Bq)}$
- Half-life 1.9 yr \rightarrow new sources in production
- Strong peaks at 2615 keV, 583 keV, range of peaks between for accurate calibration

Energy scale stability

- Stability monitored via 2.6 MeV $^{208}\mathrm{TI}$ line
- Between calibrations, stability monitored via pulser
- If detector shifts beyond its resolution, excluded from analysis dataset
- Resolution stable for more than two years

Background model

[The European Physical Journal C 74.4 (2014): 2764.]

- Spectrum before LAr and PSD cuts
- Fitted using screening measurements as priors
- Low energy region dominated by $2\nu\beta\beta$ continuum

< □ > < 向

Background model: predictions at $Q_{\beta\beta}$

- Predicted flat background in $Q_{\beta\beta}$ region
- + Even contributions from $\alpha,~^{42}{\rm K}~\beta^-$, γ from $^{232}{\rm Th}$ and $^{238}{\rm U}$ chains

< □ > < @

LAr veto

- Background γ s and β s deposit energy in LAr \rightarrow scintillation
- Scintillation light wavelength shifted: $128 \text{ nm} \rightarrow 430 \text{ nm}$
- Light observed by PMTs, SiPMs

low activity PMTs

SiPM array

wavelength shifter coated fibre shroud

wavelength shifter coated copper shroud

C. Ransom (UZH)

GERDA experiment

4th September 2018 19 / 7

Sac

LAr veto: suppression

- Suppression of ${}^{42}K \beta$ peak observed \rightarrow factor of 5 suppression [The European Physical Journal C, 78(5), 388]
- Acceptance calculated through pulser events $(97.7\pm0.1)\%$

Pulse shape discrimination

• Reject multi-site events by pulse shape differences

[The European Physical Journal C 73.10 (2013): 2583.

HPGe

Coax: artificial neural network (ANN)
 C. Ransom (UZH)
 GERDA experiment

Pulse shape discrimination

- Coaxials have large p contact \rightarrow uniform field, electrons and holes contribute to signal
- BEGes have point p contact \rightarrow only holes contribute to signal

C. Ransom (UZH)

Sar

22 / 7

Pulse shape discrimination: calibration

- Double escape peak (DEP) from ²⁰⁸TI: single-site sample
- Full energy peak (FEP) from ²¹²Bi: multi-site sample
- Cut value at 90% DEP survival for A/E and ANN

Pulse shape discrimination: suppression

• Both K lines, high energy α events strongly suppressed

C. Ransom (UZH)

nac

Deviations from linearity

- Combined calibration spectrum tests deviations from linearity: deviation of peak positions from literature positions
- Systematic uncertainty on energy scale: 0.2 keV for BEGe/Coax

Resolution at $Q_{\beta\beta}$: combining detectors

- Knowledge of resolution at $Q_{\beta\beta}$ vital for $0\nu\beta\beta$ analysis
- Detector resolutions measured from combined calibration spectra: best statistics
- Effective dataset resolution combines individual detectors according to individual exposures
- Combination of many Gaussians with negligible offsets: $FWHM^2 = \frac{1}{\epsilon} \Sigma_i \epsilon_i FWHM_i^2$ with sum over detectors, ϵ is exposure

Resolution at $Q_{\beta\beta}$

• Dataset resolution curves are fit:

$$\mathrm{FWHM} = \sqrt{A + BE}$$

- where A accounts for electronics noise, B is fluctuations in produced charge carriers
- Some peaks excluded due to topology
- Resolution at $Q_{\beta\beta}$ (preliminary): Coax: 3.6(1) keV BEGe: 3.0(1) keV

Resolution: cross-check with physics data

- Resolution curve from calibration data cross-checked with resolution of background peaks in physics data
- Previously, statistics too low for many background peaks
- Ad-hoc constant term applied to Coax as a correction for $^{\rm 42}{\rm K}$
- Now none, disfavoured by other lines

Background index

- Background index determined in region 1930-2190 keV, excluding two known γ lines and ${\rm Q}_{\beta\beta}\pm5~{\rm keV}$
- Estimated background index at $Q_{\beta\beta}$ from unblinded region: Coax: $0.7^{+0.5}_{-0.3} \cdot 10^{-3} \text{ cts/(keV·kg·yr)}$ BEGe: $0.6^{+0.4}_{-0.3} \cdot 10^{-3} \text{ cts/(keV·kg·yr)}$
- Sensitivity is not limited by background, but by exposure

Unblinding

C. Ransom (UZH)

4th September 2018 30

୬ < ୯ 30 / 7

Statistical analysis

- Combined fit of Phases I and II
- Flat background + Gaussian signal

Frequentist (preliminary)

- Sensitivity for limit setting: $1.1\cdot 10^{26}$ yr (90% C.L.)
- Best fit: no signal
- $T_{1/2}^{0\nu} > 0.9 \cdot 10^{26} \, {\rm yr}$ (90% C.L.)

Bayesian (preliminary)

- Sensitivity for limit setting: $8.2\cdot 10^{25} \, \text{yr} \, (90\% \text{ C.l.})$
- Best fit: background only
- $T_{1/2}^{0\nu} > 7.6\cdot 10^{25} \, {\rm yr}$ (90% C.I.)

GERDA upgrade: new detectors

- Upgrade April-May 2018
- 5 new enriched detectors (9.5 kg)
- Inverted Coaxial Point Contact (IC) detectors
- Similar energy resolution and PSD power as BEGe detectors
- Larger mass \rightarrow make up loss in exposure due to upgrade time with mass increase

p+ contact

GERDA upgrade: other activities

- Denser fibre shroud \rightarrow increase in veto efficiency
- Lower activity cables
- JFET repair and exchange \rightarrow improved reliability
- Detector holder modification \rightarrow less 'dead' material per Ge mass

LEGEND

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay
- Majorana and GERDA collaborations join (among others)
- Aim for discovery potential above $10^{27}\,{\rm yr}$
- + Phased approach, 200 kg \rightarrow 1 t Ge

< □ > < @ >

LEGEND

LEGEND-200

- 200 kg stage at LNGS using GERDA cryostat
- Begin operation \sim 2021
- Use IC detectors as tested in GERDA
- Background aim 0.2 cts/(keV·t·yr) $\rightarrow 1/5$ GERDA Phase II

LEGEND-1T

Modular approach, deploy 200-250 kg stages

Energy reconstruction

Two main energy filters reconstruct energy: [Physics Procedia 61 (2015) 673] Pseudo-Gaussian: Zero area cusp (ZAC):

- $25 \times 5 \,\mu s$ moving average
- Fast. robust \rightarrow online processing

C. Ransom (UZH)

- Finite cusp with zero-area constraint
- Parameters optimised for each detector/calibration
- Improved energy resolution (Coax: 0.2-0.5 keV)
- Used for all final physics analysis

K lines comparison

Discrepancy in K lines resolution • partially due to inhomogeneous exposure of detectors

< □ > < 向

C. Ransom (UZH)

GERDA experiment

- b 4th September 2018 37 / 7

Э

Sac

Checking of event 3 keV from $Q_{\beta\beta}$

- Waveform checked by eye
- Detector stable in energy and resolution at time of event
- No significant deviations from linearity observed

C. Ransom (UZH)

4th September 2018 38 / 7