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Neutrino masses: knowns and unknowns  
from Cosmology et al



• What we know: Neutrino mass bounds from cosmology  

• What we do not know (yet!) but we will probably know: 
Neutrino mass ordering from bounds on Σmν   

• What will be extremely hard to know: Neutrino mass 
ordering from individual mi’s   

• The Dark Justice League game: Σmν versus w(z) 

The knowns and the unknowns:



@ CMB: Early Integrated Sachs Wolfe effect. The transition to the non relativistic 
neutrino regime gets imprinted in the decays of the gravitational potentials near the 
recombination period (maximal around the first peak). CMB Lensing.

@LSS: Suppress structure formation on scales larger than the free streaming scale 
when they turn non relativistic. (Bond et al PRL’80, Hu et al PRL’98)

 (M. Tegmark)
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@ CMB: Early Integrated Sachs Wolfe effect (ISW)


In matter domination, the gravitational potential is constant: NO ISW effect!

The transition from the relativistic to the non relativistic neutrino regime gets 
imprinted in the decays of the gravitational potentials near the recombination 

period, contributing to the ISW effect! 


⇥(n̂) =
�T

T
(n̂) ' ⇥0 + + n̂(v̂e � v) +

Z
 ̇+ �̇ d⌘

This early ISW effect leads to a depletion 
of:


on multipoles:


@ CMB: Early Integrated Sachs Wolfe effect 


(Lesgourgues & Pastor, Phys.Rept’06)
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enhanced for 1st peak (early ISW); depends on (1 + zeq)/(1 + zLS )
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Julien Lesgourgues neutrino abundance & mass, CMB & P(k)

ISW m⌫ = 2 eV

m⌫ = 1 eV

m⌫ = 0.5 eV
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@ CMB: Early Integrated Sachs Wolfe effect (ISW).

          Shift in the angular position of the peaks.

Strong degeneracy between Σmν  and the Hubble constant H0!

✓s =
rs
DA

The higher the neutrino mass, the lower the angular diameter distance. 

Peaks shift to lower multipoles. But this effect can be compensated with a lower 

Hubble constant:

DA =

Z zrec

0

dz

H(z)

 5

m⌫ = 2 eV
m⌫ = 1 eV
m⌫ = 0.5 eV
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Fig. 1.— Comparison of the physical scales as functions of Ω0h2 and the baryon fraction Ωb/Ω0. (a) The
equality scale vs. the sound horizon: keqs/π (unlabeled contours at 0.1 increments). (b) The sound horizon
vs. the Silk scale: kSilks/π (unlabeled contours 2 and 3). The factors of π have been included to facilitate
comparison with the acoustic scale.

rate (see HS96, Eqn. C8, E2). A fit to the numerical recombination results is

zd = 1291
(Ω0h2)0.251

1 + 0.659(Ω0h2)0.828
[1 + b1(Ωbh

2)b2 ],

b1 = 0.313(Ω0h
2)−0.419[1 + 0.607(Ω0h

2)0.674],

b2 = 0.238(Ω0h
2)0.223, (4)

where we have reduced zd by a factor of 0.96 from HS96 on phenomenological grounds. For Ωbh2
∼< 0.03,

this epoch follows last scattering of the photons.

Prior to zd, small-scale perturbations in the photon-baryon fluid propagate as acoustic waves. The
sound speed is cs = 1/

√

3(1 + R) (in units where the speed of light is unity), where R is the ratio of the
baryon to photon momentum density,

R ≡ 3ρb/4ργ = 31.5Ωbh
2Θ−4

2.7(z/103)−1. (5)

We define the sound horizon at the drag epoch as the comoving distance a wave can travel prior to redshift
zd,

s =

∫ t(zd)

0
cs (1 + z)dt =

2

3keq

√

6

Req
ln

√
1 + Rd +

√

Rd + Req

1 +
√

Req
, (6)r
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Strong degeneracy between Σmν  and the Hubble constant H0!

Planck Collaboration: Cosmological parameters

if we add CMB lensing, since the lensing measurements restrict
the lensing amplitude to values closer to those expected in base
⇤CDM.

The combination of the acoustic scale measured by the CMB
(✓MC) and BAO data is su�cient to largely determine the back-
ground geometry in the ⇤CDM+

P
m⌫ model, since the lower-

redshift BAO data break the geometric degeneracy. Combining
BAO data with the CMB lensing reconstruction power spectrum
(with priors on ⌦bh

2 and ns, following PL2015), the neutrino
mass can also be constrained to be
X

m⌫ < 0.60 eV (95 %, Planck lensing+BAO+✓MC). (61)

This number is consistent with the tighter constraints using the
CMB power spectra, and almost independent of lensing e↵ects
in the CMB spectra; it would hold even if the AL tension dis-
cussed in Sect. 6.2 were interpreted as a sign of unknown resid-
ual systematics. Since the constraint from the CMB power spec-
tra is strongly limited by the geometrical degeneracy, adding
BAO data to the Planck likelihood significantly tightens the neu-
trino mass constraints. Without CMB lensing we find

X
m⌫ < 0.16 eV (95 %, Planck TT+lowE+BAO), (62a)

X
m⌫ < 0.13 eV (95 %, Planck TT,TE,EE+lowE

+BAO), (62b)

and combining with lensing the limits further tighten to

X
m⌫ < 0.13 eV (95 %, Planck TT+lowE+lensing

+BAO), (63a)

X
m⌫ < 0.12 eV (95 %, Planck TT,TE,EE+lowE

+lensing+BAO). (63b)

These combined constraints are almost immune to high-` po-
larization modelling uncertainties, with the CamSpec likelihood
giving the 95 % limit

P
m⌫ < 0.13 eV for Planck TT,TE,EE

+lowE+lensing+BAO.
Adding the Pantheon SNe data marginally tightens the bound

to
P

m⌫ < 0.11 eV (95 %, Planck TT,TE,EE+lowE+lensing
+BAO+Pantheon). In contrast the full DES 1-year data prefer a
slightly lower �8 value than the Planck ⇤CDM best fit, so DES
slightly favours higher neutrino masses, relaxing the bound toP

m⌫ < 0.14 eV (95 %, Planck TT,TE,EE+lowE+lensing+BAO
+DES).

Increasing the neutrino mass leads to lower values of H0, and
hence aggravates the tension with the distance-ladder determina-
tion of Riess et al. (2018a, see Fig. 34). Adding the Riess et al.
(2018a) H0 measurement to Planck will therefore give even
tighter neutrino mass constraints (see the parameter tables in the
PLA), but such constraints should be interpreted cautiously until
the Hubble tension is better understood.

The remarkably tight constraints using CMB and BAO data
are comparable with the latest bounds from combining with
Ly↵ forest data (Palanque-Delabrouille et al. 2015; Yèche et al.
2017). Although Ly↵ is a more direct probe of the neutrino mass
(in the sense that it is sensitive to the matter power spectrum on
scales where the suppression caused by neutrinos is expected
to be significant) the measurements are substantially more dif-
ficult to model and interpret than the CMB and BAO data. Our
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Fig. 34. Samples from Planck TT,TE,EE+lowE chains in theP
m⌫–H0 plane, colour-coded by �8. Solid black contours

show the constraints from Planck TT,TE,EE+lowE+lensing,
while dashed blue lines show the joint constraint from Planck

TT,TE,EE+lowE+lensing+BAO, and the dashed green lines ad-
ditionally marginalize over Ne↵ . The grey band on the left shows
the region with

P
m⌫ < 0.056 eV ruled out by neutrino oscilla-

tion experiments. Mass splittings observed in neutrino oscilla-
tion experiments also imply that the region left of the dotted ver-
tical line can only be a normal hierarchy (NH), while the region
to the right could be either the normal hierarchy or an inverted
hierarchy (IH).

95 % limit of
P

m⌫ < 0.12 eV starts to put pressure on the in-
verted mass hierarchy (which requires

P
m⌫ >⇠ 0.1 eV) indepen-

dently of Ly↵ data. This is consistent with constraints from neu-
trino laboratory experiments which also slightly prefer the nor-
mal hierarchy at 2–3� (Adamson et al. 2017; Abe et al. 2018;
Capozzi et al. 2018).

7.5.2. Effective number of relativistic species

New light particles appear in many extensions of the Standard
Model of particle physics. Additional dark relativistic degrees
of freedom are usually parameterized by Ne↵ , defined so that
the total relativistic energy density well after electron-positron
annihilation is given by

⇢rad = Ne↵
7
8

 
4

11

!4/3

⇢�. (64)

The standard cosmological model has Ne↵ ⇡ 3.046, slightly
larger than 3 since the three standard model neutrinos were
not completely decoupled at electron-positron annihilation
(Mangano et al. 2002; de Salas & Pastor 2016).

We can treat any additional massless particles produced well
before recombination (that neither interact nor decay) as simply
an additional contribution to Ne↵ . Any species that was initially
in thermal equilibrium with the Standard Model particles pro-
duces a �Ne↵ (⌘ Ne↵ � 3.046) that depends only on the number
of degrees of freedom and decoupling temperature. Using con-
servation of entropy, fully thermalized relics with g degrees of
freedom contribute

�Ne↵ = g

"
43

4 gs

#4/3

⇥

(
4/7 boson,
1/2 fermion, (65)

47

Planck 2018 results, 1807.06209
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@ CMB: Early Integrated Sachs Wolfe effect (ISW).

          Shift in the angular position of the peaks.

 7

ISW

horizontal shift

m⌫ = 2 eV

m⌫ = 1 eV

m⌫ = 0.5 eV
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@ CMB: Lensing remaps the CMB fluctuations: 

(Kaplinghat et al PRL’03, Lesgourgues et al, PRD’06)

Lensing potential 𝟇 is a measure of the integrated mass distribution back to the last 
scattering surface

⇥lensed(n̂) = ⇥(n̂+r�(n̂))

Neutrino free streaming affects the 

gravitational potential, changing the gravitational 
lensing of CMB photons as they traverse these 
potentials!

Geometry


Matter distribution
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
neutrinos (of equal mass). The colour coding is for the summed neutrino mass

P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-

17

(Planck coll., A&A’14)
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Neutrino masses suppress structure formation on scales larger than their free 
streaming scale when they turn non relativistic. (Bond et al PRL’80)

 9

Neutrinos with eV masses are hot relics with large thermal velocities!

Cold dark matter instead has zero velocity and therefore it clusters at any scale!
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(From Y. Wong)

� ⌧ �fs,⌫ ! k � kfs,⌫ � � �fs,⌫ ! k ⌧ kfs,⌫

large velocity dispersion. Using the relativistic Fermi–Dirac distribution (3), we find a rough
estimate of this velocity dispersion:

hvthermali ' 81(1 + z)
✓
eV

m⌫

◆
km s�1. (6)

For a ⇠ 1 eV neutrino, hvthermali ' 100 km s�1 is comparable to the typical velocity dispersion
of a galaxy. For dwarf galaxies, the velocity dispersion is even smaller, ⇠ O(10) km s�1. Thus
the relic neutrinos have much too much thermal energy to be squeezed into small volumes
to form the smaller structures we observe today [10]. In contrast, cold dark matter (CDM)
has by definition hvthermali = 0, and is thus not subject to these constraints.

Nonetheless, even if relic neutrinos cannot form the bulk of the cosmic dark matter,
because their kinematic properties are so di↵erent from those of CDM, their presence at
even the ⌦⌫ ⇠ 0.1% level must leave a signature in the large-scale cosmological observables.
Detecting this signature will then allow us to establish the absolute neutrino mass scale via
equation (5).

In this section, I outline the theoretical framework for predicting the e↵ects of massive
neutrinos on the CMB anisotropies and LSS matter power spectrum via linear perturbation
theory. For more detailed discussions of linear cosmological perturbation theory in general,
see, e.g., [11, 12].

3.1 The homogeneous universe

The observed universe appears to be homogeneous and isotropic on scales of O(100) Mpc.
On these scales space also appears to be expanding. The simplest spacetime metric that
captures these observational features has the form

ds2 = gµ⌫dx
µdx⌫ = a2(⌧)[�d⌧ 2 + �ijdx

idxj], (7)

where ⌧ is the conformal time, and xi .= x are the comoving coordinates. The metric (7),
known as the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric, forms the basis of
modern cosmology.

The spatial part of the FLRW metric �ij encodes the local geometry of space, which can
be (i) flat and Euclidean, (ii) spherical (i.e., with positive curvature), or (iii) hyperboloid
(i.e., with negative curvature). Currently, there is no observational evidence for spatial
curvature [13]. From a theoretical perspective, it is also di�cult to reconcile spatial curvature
with inflationary cosmology (see, e.g., [14]). We therefore consider only the case of flat spatial
geometry, so that �ij = �ij.

The energy content of the universe is encoded in the stress–energy tensor Tµ⌫ . Homo-
geneity and isotropy imply that there is only one sensible choice,

T µ
⌫ = T̄ µ

⌫ ⌘ diag (�⇢̄, p̄, p̄ , p̄) , (8)

where ⇢̄ and p̄ are the spatially averaged energy density and pressure, respectively, of a
comoving fluid in its rest frame. Expression (8) can be easily generalised to the multi-fluid

7
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@LSS: Caveats, NON-LINEARITIES

2.5. Neutrino properties and cosmological observations 47

Figure 2.3: Linear power spectrum for three cosmological models with three degenerate massive
neutrinos and one with massless neutrinos. The red line depicts the matter power spectrum
P (k) for the best fit parameters for a ΛCDM model with massless neutrino from the Planck
data set. Neutrino large free-streaming produces a decrease in the amplitude of the power
spectrum on small scales.

The growth of CDM perturbations is reduced due the fact that one of the component in
the universe contributes to the homogeneous expansion rate but not to the gravitational
clustering.

In Fig. 2.3 we plot the linear power spectrum, computed with CAMB, for a massless neu-
trino universe using the best fit parameters from Planck measurements, [8 ], (red line) . We
also plot the linear power spectrum of different cosmological models with three degenerate
massive neutrinos.

Notice that neutrinos suppress the power on scales below the free streaming scale when
they become non relativistic. We will carefully explain this effect in Chapter IV. This
suppression comes from the two effects. The first one is that neutrinos modify the matter
radiation equality. This time represents the epoch when the contribution of radiation to the
total energy content of the universe equals the contribution from matter and is given by:

aeq =
Ωr

Ωb + ΩCDM
(2.67)

with Ωr taking contributions from both photons and neutrinos. Since both cosmological

9

FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofitmethod with the camb code [147] (red line) and the
Coyote emulator (blue line) [114–116] at z=0.57 for the ⇤CDM best-fit parameters from Planck TT 2015 data and M⌫ = 0 eV
(given that the emulator does not fully implement corrections due to non-zero neutrino masses on small scales). Green triangle
data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from the
diagonal elements Cii of the covariance matrix. For comparison with previous work [23], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
di↵erent. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k

range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.

CMASS P (k), we consider data from the Six-degree Field
Galaxy Survey (6dFGS) [157], the WiggleZ survey [158],
and the DR11 LOWZ sample [159], as done in [23]. We
refer to the combination of these three BAO measure-
ments as BAO . When combining BAO with the base

CMB dataset and the DR12 CMASS P (k) measure-
ments, we refer to the combination as basePK . When
combining BAO with the basepol CMB dataset and the
DR12 CMASS P (k) measurements, we refer to the com-
bination as basepolPK . Recall that we have summa-
rized our nomenclature of datasets (including baseline
datasets) and their combinations in Tab. II.

The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as M⌫ is increased). The Wig-
gleZ data instead consist of measurements of the acoustic
parameter A(z) at three redshifts: z = 0.44, z = 0.6, and
z = 0.73, where the acoustic parameter is defined as:

A(z) =
100Dv(z)

p
⌦mh2

cz
. (16)

Given the e↵ect of M⌫ on Dv(z), A(z) will increase as
M⌫ increases. Finally, the DR11 LOWZ data consists

of a measurement of Dv(z)/rs(zdrag) (which increases as
M⌫ is increased) at z = 0.32.
Since the BAO feature is measured from the galaxy

two-point correlation function, to avoid double counting
of information, when considering the base and basepol

datasets we do not include the DR11 CMASS BAO mea-
surements, as the DR11 CMASS and DR12 CMASS vol-
umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-
pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(ze↵)/rs(zdrag) at
ze↵ = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)

(Vagnozzi et al, PRD’17)

Beyond a given scale knl, linear perturbation theory 

breaks down!

What we know: Massive neutrinos cosmological signatures

z = 0.57
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@LSS: Caveats, BIAS!

Pgg(k, z) = bias2P (k, z)

Neutrinos themselves induce a scale-dependent bias  (LoVerde & Zaldarriaga; Castorina et al)

Galaxies are biased tracers of the underlying matter density field!   (Kaiser, APJ’84)

15

that of Ref. [82], found to be in agreement with simula-
tions in Ref. [41]. Note that the scaling of the step in the
bias, �L, is smaller than we found for light relics, where
�L = 0.6 fX , since here we are giving mass to an oth-
erwise present (albeit massless) neutrino, as opposed to
including a whole new particle in our analysis. Addition-
ally, we calculate the linear Eulerian bias with Eq. (39),
where now

Tm(k) = fcTc(k) +
N⌫X

i=1

fiTi(k), (50)

and we remind the reader that the subscript c stands for
CDM+b.

Adding massive neutrinos also causes a scale-
dependent Eulerian bias, of size f⌫ ⌘

P
i f⌫i , as we show

in Fig. 10. Part of this bias is caused by the inclusion of
neutrinos in the matter budget, and part of it is due to
the e↵ect of neutrinos in the collapse of the haloes. Both
e↵ects contribute with similar sizes, and simply consid-
ering the bias with respect to cold dark matter does not
result in a purely scale-independent bias, as we will ex-
plore later. As a consequence, we can read from Fig. 10
that the 3% suppression in the matter power spectrum
caused by massive neutrinos is reduced to 1% for the
haloes, making the e↵ect of neutrinos harder to observe
in galaxy power spectra [27]. In Ref. [102] it was shown
that ignoring the scale-dependence of the bias is a safe
approximation with current cosmological data, albeit it
would induce biases with more-precise data from next-
generation surveys. With RelicFast we can compute the
linear bias quickly and precisely, so it would be possible
to include a calculation of the bias in any cosmological
search of neutrino masses.

Additionally, both matter and halo power spectra in
Fig. 10 show a bump at scales k = 10�3�10�2

h Mpc�1,
when including neutrinos. This result was expected for
the matter power spectrum [74, 103], but we see that the
scale-dependence of the linear bias enhances the bump in
the halo power spectrum to the half-percent level. This
enhancement is also present in the rest of the relics we
have studied, although it is too small to warrant any
further consideration.

B. Neutrino hierarchies

Let us now study the e↵ect of the neutrino hierarchy
on the halo bias and power spectrum. For total neu-
trino masses M⌫ � 0.1 eV the precise di↵erence between
the neutrino mass eigenstates is largely irrelevant, and
both hierarchies are well approximated as three degen-
erate neutrinos, with the same mass. Let us, instead,
study the opposite case, where M⌫ = 0.09 eV. This is the
lowest mass possible within the IH, where we will have
two massive neutrinos, with m

IH

⌫i
= {0.045, 0.045} eV. In

the NH, however, we will have three massive neutrinos,
with masses m

NH

⌫i
= {0.05, 0.02, 0.02} eV. We compare

the two hierarchies to the 3deg. approximation, where
m

3deg.
⌫i

= {0.3, 0.3, 0.3} eV, and the 1⌫ case in Fig. 10.
This Figure shows that the 1⌫ approximation fails to re-
produce either of the two hierarchies, as it overpredicts
the amount of suppresion [10], and the more-massive sin-
gle neutrino has a larger kfs, resulting in a displacement
of the suppression to larger k. However, taking three
degenerate neutrinos, with the same M⌫ = 0.09 eV, re-
produces the bias for the NH to great precision at all
scales, and only deviates from the IH within 0.1% at in-
termediate scales, showing that the 3deg. case is indeed
a good approximation to both hierarchies.
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FIG. 11: Same as Fig. 10, albeit with
P

m⌫i = 0.06
eV.

We now study the case of M⌫ = 0.06 eV, at the edge
of the minimum neutrino mass possible (and thus only
allowed by the NH). In this case the NH has two massive
neutrinos, with m⌫i = {0.05, 0.01} eV, which we compare
in Fig. 11 with the 1⌫ approximation (with m⌫ = 0.06
eV), and the 3deg. case (with m

3deg.
⌫i

= {0.02, 0.02, 0.02}
eV). We find that the suppression in the matter power
spectrum is roughly 2% for all cases, (with exact values
of {2.1, 2.0, 1.8}% for 1⌫, NH, and 3deg., respectively, all
at k = 1h Mpc�1), whereas for the halo power spectrum
this suppression is less pronounced, reaching values of
{0.7,0.6,0.3} % for the same cases. Thus, the 1⌫ approx-
imation is better at reproducing the NH, as expected,
but the relative di↵erence between these two cases is still
of the order of 20%. This is to be expected, as these
two cases have a distribution of neutrino masses that is
also di↵erent by 20%. Additionally, we see that while for
M⌫ & 0.1 eV the 3deg. approximation works better than
the 1⌫ case, this trend is reversed at lower masses, so one

(Muñoz & Dvorkin 1805.11623)
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FIG. 9: Linear Lagrangian bias and Eulerian bias with
respect to CDM (defined as b̃1 = Phc/Pcc), for the IH,
NH, and the approximations with only one neutrino (1⌫)
and three degenerate neutrinos (3deg.), all with same to-
tal mass

P
m⌫i = 0.09 eV, as well as for ⇤CDM with

massless neutrinos (in black). The fit for the bias is ob-
tained with Eq. (49). Similarly to other figures, we set
M = 1013

h
�1

M�, zcoll = 0.7, and kref = 10�4
h Mpc�1,

although we keep ⌦d fixed instead of ⌦m.

CLASS, which allows for any number of light relics with
di↵erent masses (and temperatures) [74, 100]. Moreover,
we implement the spherical collapse of haloes including
all neutrinos simultaneously, which provides us with the
halo bias in the presence of three neutrinos with arbi-
trary masses. Then, we find the halo power spectrum for
both the NH and IH, for any M⌫ , and ask whether con-
sidering one massive neutrino (1⌫) or three degenerate
ones (3deg.) are good approximations to either of the
two hierarchies.

Throughout this section we will keep the CDM den-
sity ⌦dh

2 = 0.12 fixed, as a proxy for CMB observations,
since light neutrinos would always appear as radiation
during recombination (see, however, Ref. [101] for the
impact of CMB lensing). This means that ⌦mh

2 will be
larger for universes with massive neutrinos, and thus ⌦⇤

will be reduced (as we do not alter h). We show in Ap-
pendix D how keeping ⌦m fixed, instead of ⌦c, produces a
larger suppression in the power spectra but almost identi-
cal biases. Additionally, we have not included the e↵ects
of neutrino clustering since it has been shown to be negli-
gible for the neutrino masses we study here [48]. Finally,
we reduce Ne↵ by N

⌫
e↵

= 1.0132 for each massive neutrino
we independently include, both in our calculation and in

CLASS, so as to produce Ne↵ = 3.046 at early times [74].
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FIG. 10: Linear bias and suppression factors for the
same inputs as Fig. 9 (i.e.,

P
i m⌫i = 0.09 eV). The ver-

tical dashed lines represent the largest kfs for each case,
and in hollow symbols and dashed lines in the bottom
panel denote Rm, whereas filled symbols and solid lines

denote Rh.

A. Scale-dependent Bias

We begin by finding the e↵ect of neutrinos on the linear
bias. We will treat each massive neutrino as an indepen-
dent light relic. Thus, we will consider an arbitrary num-
ber N⌫ of them, by self-consistently including them both
in the Boltzmann solver (CLASS) and in the spherical col-
lapse equation. We show the result for the Lagrangian
bias in Fig. 9, for both the NH and IH, as well as the
1⌫ and 3deg. approximations. From this Figure we see
that, even with a modest total mass of 0.09 eV, neutri-
nos cause a 0.35 percent step in the Lagrangian bias, in
addition to the half a percent already present in ⇤CDM.

In order to approximate our result, we fit the combined
e↵ect of a number N⌫ of massive neutrinos through

b
L,fit

1
(k)

b
L
1
(kref)

= R
⇤CDM

L

"
1 +

N⌫X

i=1

�(i)
L

2

✓
tanh


log(qi)

�q

�
+ 1

◆#
,

(49)
where at zcoll = 0.7, similarly to the light-relic case, we

find that �(i)
L = 0.55 f⌫i , qi = 5k/k

(i)
fs

, where we have
defined f⌫i = ⌦i/⌦m, with ⌦ih

2 = m⌫i/(93.14 eV). The
slope of �L ⌘ �bL/bL � 1 = 0.55 f⌫ is consistent with

X
m⌫ = 0.06 eV

X
m⌫ = 0.09 eV

What we know: Massive neutrinos cosmological signatures



(Peloso et al JCAP’15)

Large scale structure measurements can be 

interpreted either in the geometrical or shape forms
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What we know: Massive neutrinos cosmological signatures



What we know

Riess et al, APJ’18

X
m⌫ < 0.24 eV 95%CL

X
m⌫ < 0.12 eV 95%CL

X
m⌫ < 0.11 eV 95%CL

X
m⌫ < 0.0970 eV 95%CL

Planck TTTEEE+lowT+lowE+lensing

+ BAO

+ BAO + SNIa

+ BAO + SNIa + H0=73.45 ±1.66 km/s/Mpc

Planck 2018 results, 1807.06209



Planck TTTEEE+lowT+lowE+lensing

+ BAO

Planck 2018 results, 1807.06209

+ BAO + SNIa

+ BAO + SNIa + H0=73.45 ±1.66 km/s/Mpc + w + nrun

X
m⌫ < 0.16eV Ne↵ = 3.11+0.38

+0.38 95%CL

What we know



CMB+BAO+H0+τ+SZ   Σmν < 0.093 eV

What we know

(Palanque et al, JCAP’15)

Planck 2018 results, 1807.06209



Cosmology IS CURRENTLY UNABLE to extract individually the mass of the neutrino 
eigenstates and the ordering of their mass spectrum:


 All the limits on the neutrino mass ordering come from the bound on Σ mν.


• What we do not know (yet!): Neutrino mass ordering 

Parameterizations:

(A)


(B)


Priors:


Linear

Logarithmic


The most effective prior/parameterization is the one which minimizes the fraction of 
initial parameter space incompatible with data


m1,m2,m3

mlightest,�m2
13,�m2

12
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Figure 3. Graphical visualisation of the Bayesian factors comparing normal and inverted ordering.
The horizontal lines indicate the values at which there is a change in the statistical significance of
the evidence, according to the Je↵reys’ scale (see table 1). Black (red) points indicate a logarithmic
(linear) prior. The prior ranges are those reported in table 3 if not otherwise stated.

disfavours IO when a logarithmic prior is considered, and therefore Case A with logarithmic
priors is the only one in which we find a strong preference for NO.

When we also account for information on the neutrino mass scale, either from CMB
or 0⌫�� probes, the situation for Case B does not change dramatically with respect to the
oscillations-only case, as shown in figure 3. Case A is not considered because it is much less
e�cient than Case B (see below).

The Bayesian evidence analysis also opens the possibility to test the various parametriza-
tions (i.e. Case A versus Case B) and prior choices (logarithmic versus linear). Figure 5
illustrates the Bayesian evidence of the di↵erent parameterizations and priors, normalised to
the best scenario within each plot, for an easier comparison. Each of the panels corresponds
to a given combination of data sets as indicated above and it is divided in two sub-panels,
one for NO (left) and one for IO (right).

The top panel shows how a change in the prior ranges impacts the Bayesian evidences
of Cases A and B, when either a linear or logarithmic prior is adopted and only oscillation
measurements are considered in the numerical analysis. Notice that a di↵erent prior on the
lightest neutrino mass leaves the Bayesian evidences of Case B unchanged both for NO and
IO and for both linear and logarithmic priors. This is because the parameter mlightest remains
unconstrained in all the cases, and the Bayes factor does not penalise unconstrained param-
eters through the Occam’s razor. On the other hand, when considering Case A, the linear
priors are always moderately-to-strongly less e�cient for the parameter space exploration
with respect to logarithmic priors, and the Case A itself is always much less e�cient with
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• What we do not know (yet!): Neutrino mass ordering 

Agreement with previous analyses ( Hannestad & Schwetz, JCAP’ 16, Gerbino et al, 
PLB’17, Vagnozzi et al, PRD’17, Caldwell et al PRD’17, Capozzi et al PRD’17)
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“The imPRIORtance”:


If the PRIOR affects the posterior, the data (i.e. likelihoods) are NOT informative enough!
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Figure 3. Graphical visualisation of the Bayesian factors comparing normal and inverted ordering.
The horizontal lines indicate the values at which there is a change in the statistical significance of
the evidence, according to the Je↵reys’ scale (see table 1). Black (red) points indicate a logarithmic
(linear) prior. The prior ranges are those reported in table 3 if not otherwise stated.

disfavours IO when a logarithmic prior is considered, and therefore Case A with logarithmic
priors is the only one in which we find a strong preference for NO.

When we also account for information on the neutrino mass scale, either from CMB
or 0⌫�� probes, the situation for Case B does not change dramatically with respect to the
oscillations-only case, as shown in figure 3. Case A is not considered because it is much less
e�cient than Case B (see below).

The Bayesian evidence analysis also opens the possibility to test the various parametriza-
tions (i.e. Case A versus Case B) and prior choices (logarithmic versus linear). Figure 5
illustrates the Bayesian evidence of the di↵erent parameterizations and priors, normalised to
the best scenario within each plot, for an easier comparison. Each of the panels corresponds
to a given combination of data sets as indicated above and it is divided in two sub-panels,
one for NO (left) and one for IO (right).

The top panel shows how a change in the prior ranges impacts the Bayesian evidences
of Cases A and B, when either a linear or logarithmic prior is adopted and only oscillation
measurements are considered in the numerical analysis. Notice that a di↵erent prior on the
lightest neutrino mass leaves the Bayesian evidences of Case B unchanged both for NO and
IO and for both linear and logarithmic priors. This is because the parameter mlightest remains
unconstrained in all the cases, and the Bayes factor does not penalise unconstrained param-
eters through the Occam’s razor. On the other hand, when considering Case A, the linear
priors are always moderately-to-strongly less e�cient for the parameter space exploration
with respect to logarithmic priors, and the Case A itself is always much less e�cient with
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Figure 4. Di↵erence in allowed volumes for the three absolute neutrino masses for NO and IO from
neutrino oscillation data only. The top (bottom) panels show the case of linear (logarithmic) priors.

respect to Case B. The reason is simple: the parametrization that uses three neutrino masses
as free parameters corresponds to a waste of parameter space. Since neutrino oscillations
determine the squared mass di↵erences with a high accuracy, most of the parameter space
in Case A at high neutrino masses is useless for the data fit, so that this parametrization is
indeed penalised by the Occam’s razor. Being motivated by the physical observables, Case
B is therefore preferred over Case A when performing the analyses.

The bottom panels of figure 5, which are restricted to Case B, tell us that the addition
of 0⌫�� or cosmological data introduce a di↵erence in the Bayesian evidences between linear
and logarithmic priors. These data indeed show that the logarithmic priors are weakly-to-
moderately more e�cient, because in this latter case the fraction of volume corresponding to
small masses, preferred by the data, is larger than in the linear case.

5 Conclusions

Plenty of work has been recently devoted in the literature to infer the neutrino mass ordering
using a number of present observations [6, 16, 25–32], but a complete and self-consistent
Bayesian analysis was still missing. Such an analysis is necessary in order to avoid strong
claims in favour of normal mass ordering, based exclusively on the choice of priors. We have
presented here the results obtained from the computationally expensive Bayesian evidence
calculations, using current neutrino oscillation data, 0⌫�� decay searches and Cosmic Mi-
crowave Background cosmological observations. In order to explicitly show the crucial role
played by both the prior choice, we analyse two possible parametrizations: (a) Case A, in
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DESI + Planck

What will be extremely hard to know…..

Neutrino mass ordering from individual mi’s  
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https://www.google.com/imgres?imgurl=http%3A%2F%2Fwww.core-mission.org%2Fimg%2Fcore_render.png&imgrefurl=http%3A%2F%2Fwww.core-mission.org%2F&docid=HJrYAXmDcCLMOM&tbnid=HjRk66IkpKB9WM%3A&vet=10ahUKEwi9itnly7zbAhVIhiwKHeBOBekQMwg5KAAwAA..i&w=450&h=338&client=firefox-b-ab&bih=879&biw=1810&q=CORE%20mission%20CMB&ved=0ahUKEwi9itnly7zbAhVIhiwKHeBOBekQMwg5KAAwAA&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.bnl.gov%2Ftoday%2Fbody_pics%2F2010%2F08%2Ftelescope_side_2-hr.jpg&imgrefurl=https%3A%2F%2Fwww.bnl.gov%2Fnewsroom%2Fnews.php%3Fa%3D111170&docid=CPXHMgPe9hI7CM&tbnid=t7vc8XTdU4lNHM%3A&vet=10ahUKEwi4oLOszLzbAhUEhiwKHfzmBfAQMwhAKAgwCA..i&w=3000&h=2250&client=firefox-b-ab&bih=879&biw=1810&q=LSST%20images&ved=0ahUKEwi4oLOszLzbAhUEhiwKHfzmBfAQMwhAKAgwCA&iact=mrc&uact=8
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Another array layout giving higher resolution is to
build an array whose elements consist of FFTTs placed
far apart. After performing a spatial FFT of their indi-
vidual outputs, these can then be multiplied and inverse-
transformed pairwise, and the resulting block coverage of
the UV plane can be filled in by Earth rotation. As long
as the number of separate FFTTs is modest, the extra
numerical cost for this may be acceptable.
Above we discussed the tradeoff between different

shapes for fixed collecting area. If one instead replaces
a D × D two-dimensional FFTT by a one-dimensional
FFTT of length D using rotation synthesis, then equa-
tion (18) shows that one loses sensitivity in two separate
ways: at the angular scale ℓ ∼ D/λwhere the power spec-
trum error bar ∆Cℓ from equation (31) is the smallest,
one loses one factor of D/λ from the drop in f cover, and
a second factor of D/λ from the drop in collecting area
A. Another way of seeing this is to note that the avail-
able information scales as the number of baselines, which
scales as the square of the number of antennas and hence
as A2. This quadratic scaling can also be seen in equa-
tion (30): the total amount of information (∆φ)−2 scales
as A2Ωτ∆ν, so whereas field of view, observing time and
bandwidth help only linearly, area helps quadratically.
This is because we can correlate electromagnetic radia-
tion at different points in the telescope, but not at differ-
ent times, at different frequencies or from different points
in the sky. The common statement that the information
gathered scales as the etendu AΩ is thus true only at
fixed ℓ; when all angular scales are counted, the scaling
becomes A2Ω.
If in the quest of more sensitivity, one keeps length-

ening an oblong or one-dimensional FFT to increase the
collecting area, one eventually hits a limit: the curvature
of Earth’s surface makes a flat D ≫ 10km exceedingly
costly, requiring instead telescope curving along Earth’s
surface and the alternative analysis frameworkmentioned
above in Section III F. If one desires maximally straight-
forward data analysis, one thus wants to grow the tele-
scope in the other dimension to make it less oblong, as
discussed in Section III F. This means that if one needs
≫ 104 antennas for adequate 21 cm cosmology sensitiv-
ity, one is forced to build a 2D rather than 1D telescope.
For comparison, even the currently funded MWA exper-
iment with its 512× 42 = 8192 antennas is close to this
number.
One final science application where 2D is required

is the study of transient phenomena that vary on a
time scale much shorter than a day, invalidating the
static sky approximation that underlies rotation synthe-
sis. This was the key motivation behind the aforemen-
tioned Waseda telescope [10–12].

IV. APPLICATION TO 21 CM TOMOGRAPHY

In the previous section we discussed the pros and cons
of the FFTT telescope, and found that it’s main strength

is for mapping below about 1 GHz when extreme sensi-
tivity is required. This suggests that the emerging field
of 21 cm tomography is an ideal first science applica-
tion of the FFTT: it requires sky mapping in the sub-
GHz frequency range, and the sensitivity requirements,
especially to improve cosmic microwave background con-
straints on cosmological parameters, are far beyond what
has been achieved in the past [24, 37–39].

A. 21cm tomography science

It is becoming increasingly clear that 21 cm tomog-
raphy has great scientific potential for both astrophysics
[18–21, 35] and fundamental physics [24, 36–39]. The ba-
sic idea is to produce a three-dimensional map of the mat-
ter distribution throughout our Universe through preci-
sion measurements of the redshifted 21 cm hydrogen line.
For astrophysics, much of the excitement centers around
probing the cosmic dark ages and the subsequent epoch
of reionization caused by the first stars. Here we will
focus mainly on fundamental physics, as this arguably
involves both the most extreme sensitivity requirements
and the greatest potential for funding extremely sensitive
measurements.

FIG. 5: 21 cm tomography can potentially map most of
our observable universe (light blue/gray), whereas the CMB
probes mainly a thin shell at z ≈ 1100 and current large-
scale structure maps (here exemplified by the Sloan Digital
Sky Survey and its luminous red galaxies) map only small
volumes near the center. Half of the comoving volume lies at
z > 29 (Appendix B). This paper focuses on the convenient
7
∼
< z

∼
< 9 region (dark blue/grey).

M. Tegmark and M. Zaldarriaga, PRD’09

SDSS

The 21 cm universe
21 cm cosmology could be able to map most of our observable universe, whereas the CMB 
probes mainly a thin shell at z≈1100 and large-scale structure maps only small volumes near 
the center so far.
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The 21 cm universe: SKA

2000 high & mid frequency dishes plus a million low-frequency antennas: 


Effective collecting area of one million m2




An extremely futuristic and optimistic hope! 


de Salas et al, 1806.11051

https://www.google.com/imgres?imgurl=http%3A%2F%2Fnewscenter.lbl.gov%2Fwp-content%2Fuploads%2Fsites%2F2%2F2015%2F09%2FPaul-Preuss-DESI-Mayall-sky.jpg&imgrefurl=http%3A%2F%2Fnewscenter.lbl.gov%2F2015%2F09%2F21%2Fdesi-cd2%2F&docid=M7FfsO21IEmg_M&tbnid=h37lzBm4eGkCYM%3A&vet=10ahUKEwjW_7XayLzbAhVEDSwKHYG8AQcQMwg_KAIwAg..i&w=612&h=610&client=firefox-b-ab&bih=879&biw=1810&q=DESI%20telescope&ved=0ahUKEwjW_7XayLzbAhVEDSwKHYG8AQcQMwg_KAIwAg&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fen%2Fthumb%2Fa%2Fa1%2FFront_view_of_the_European_Space_Agency_Planck_satellite.jpg%2F250px-Front_view_of_the_European_Space_Agency_Planck_satellite.jpg&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPlanck_(spacecraft)&docid=Vz2Wxb7lH3JhbM&tbnid=LJ8V5pWjMS2c9M%3A&vet=10ahUKEwidnMPmyLzbAhWpiaYKHSkdCzsQMwg7KAAwAA..i&w=250&h=250&client=firefox-b-ab&bih=879&biw=1810&q=planck%20satellite&ved=0ahUKEwidnMPmyLzbAhWpiaYKHSkdCzsQMwg7KAAwAA&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=http%3A%2F%2Fwww.core-mission.org%2Fimg%2Fcore_render.png&imgrefurl=http%3A%2F%2Fwww.core-mission.org%2F&docid=HJrYAXmDcCLMOM&tbnid=HjRk66IkpKB9WM%3A&vet=10ahUKEwi9itnly7zbAhVIhiwKHeBOBekQMwg5KAAwAA..i&w=450&h=338&client=firefox-b-ab&bih=879&biw=1810&q=CORE%20mission%20CMB&ved=0ahUKEwi9itnly7zbAhVIhiwKHeBOBekQMwg5KAAwAA&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.bnl.gov%2Ftoday%2Fbody_pics%2F2010%2F08%2Ftelescope_side_2-hr.jpg&imgrefurl=https%3A%2F%2Fwww.bnl.gov%2Fnewsroom%2Fnews.php%3Fa%3D111170&docid=CPXHMgPe9hI7CM&tbnid=t7vc8XTdU4lNHM%3A&vet=10ahUKEwi4oLOszLzbAhUEhiwKHfzmBfAQMwhAKAgwCA..i&w=3000&h=2250&client=firefox-b-ab&bih=879&biw=1810&q=LSST%20images&ved=0ahUKEwi4oLOszLzbAhUEhiwKHfzmBfAQMwhAKAgwCA&iact=mrc&uact=8
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advantages: non-linearities/ 
shot noise/ 

no DE uncertainties! Galaxy clustering


Largest signal from relic neutrino masses 
and their ordering appears at scales which, 

at that redshifts, lie within the mildly non-
linear regime.

One needs to rely on either N-body 
simulations or on analytical approximations!

21 cm cosmology


Epoch of Reionization 21 cm experiments 
will achieve the required scales to observe 
the neutrino signature within the linear 
regime, avoiding  simulation problems and 
widely surpassing the constraints on 
neutrino and other relic masses from even 
very large galaxy surveys.
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Foreground removal

(From S. Zaroubi)
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 Galaxy clustering


At redshifts z<2, the universe starts to be 
dominated by the dark energy fluid and 
the growth of matter perturbations is 
modified depending on the dark energy 
equation of state w(z), whose precise time-
evolution is unknown.

Consequently, for a given perturbation in 
the matter fluid, a suppression in its 
growth of structure could be due either to 
the presence of massive neutrinos or to a 
evolving dark energy fluid.


21 cm cosmology


Focusing at higher redshifts, the neutrino 
mass ordering constraints from 21 cm 
probes will be largely independent from 
the uncertainties in the dark energy fluid 
properties!
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Madame Dark energy Ω𝚲

Mr Inflation

The 3-Neutrino representative,

Ων

Lady Cold Dark matter,

Ωcdm

The radiation 
member,


Neff



The Dark JUSTICE GAME: 

The 3-Neutrino representative Σmν 


versus

the Dark energy equation of state w(z)

GAME RULES: 


1. Choose your favourite cosmological model

2. Derive cosmological bounds on Σmν within that model, discarding neutrino 

oscillations (i.e. prior Σmν >0)

3. Are cosmological bounds consistent with oscillation data?

YES!

GREAT! You just won the game!


Your model is not ruled out (yet!)

Go to 1.

NO! 

(i.e. Σmν <0.06 eV or Σmν <0.1 eV)


Write a paper

GAME OVER….after referral process



CMB+BAO+H0+τ+SZ   Σmν < 0.093 eV

The Dark Justice Game 

(Palanque et al, JCAP’15)

w(z) = w0 + wa
z

1 + z
w0 � �1 w0 + wa � �1

4

⇡(I), ⇡(N) from the global Bayesian analysis of neutrino
oscillation measurements [103]. For further details about
how to compute L(D|m0, H) and get to Eq. (4), we refer
the reader to the thorough discussions in [65, 109]. We
convey the results in terms of probability odds of normal
versus inverted hierarchy (pNH : pIH).

We follow the approach of [65, 109] as it is a quick,
yet reliable, way to quantify the preference for the nor-
mal hierarchy in different cosmological scenarios. The
method used in this work should be kept in mind when
one compares the results quoted here with results from
other works. Indeed, we remind that alternative ap-
proaches can be adopted to quantify the statistical pref-
erence for the neutrino mass hierarchy [72, 134, 140]. For
the sake of comparison, in Appendix A we report an alter-
native estimate of the sensitivity to the hierarchy based
on the Akaike information criterion (AIC). The specific
outcomes of each analysis should be interpreted only in
light of the method adopted.

IV. RESULTS

In this section, we present the bounds on the sum
of the three active neutrino masses; we provide a thor-
ough physical explanation of the results; we discuss the
Bayesian statistical approach we have used, as well as the
dependence of our results on this approach; and we con-
clude by commenting on the implications of our results
for the determination of the neutrino mass ordering.

A. Bounds on Neutrino Masses

Table I shows the bounds on the sum of the neutrino
masses M⌫ for three cases: a) a dark energy component
satisfying the dominant energy condition, with equation
of state (EoS) w(z) � �1 throughout the expansion
history of the Universe (non-phantom dynamical dark
energy, NPDDE); b) the standard cosmological model
(⇤CDM) with cold dark matter and a cosmological con-
stant where w(z) = �1 is fixed; c) a generic dynamical
dark energy (DDE) model with EoS given by the CPL
parametrization, Eq. (1), with w0 and wa free to vary
even within the phantom region where w(z) < �1. We
refer to this last model as w0waCDM. Constraints on M⌫

are presented for the two different combinations of cosmo-
logical datasets, base and pol, described at the beginning
of Sec. III.

For the ⇤CDM model, we find M⌫ < 0.16 eV at
95% C.L. for the base dataset and M⌫ < 0.13 eV for
the pol dataset. When we instead assume the more
generic w0waCDM model, that also allows for w(z) <
�1, the upper limit on M⌫ is significantly relaxed to
M⌫ < 0.41 eV at 95% C.L. for the base dataset and
M⌫ < 0.37 eV for the pol dataset. These broader bounds
are expected, given the well known degeneracy between
M⌫ and an arbitrary DDE component.

We now consider a NPDDE model and impose w(z) �
�1 throughout the expansion history. In this case,
we find the stringent constraints of M⌫ < 0.13 eV at
95% C.L. for the base dataset and M⌫ < 0.11 eV for
the pol dataset. Therefore, we find that the con-
straints on the sum of the neutrino masses in
dynamical dark energy models with w(z) � �1 are
slightly tighter than those obtained in ⇤CDM, de-
spite the enlarged parameter space (two extra parame-
ters) in NPDDE models. We note that the upper bounds
found within the NPDDE model are also very close to the
minimal mass allowed in the inverted hierarchy scenario,
M⌫,min ' 0.1 eV.

Figure 1 depicts the one-dimensional posterior prob-
abilities of M⌫ for the w0waCDM generic DDE case (in
blue), the ⇤CDM case (in black), and the NPDDE model
with w(z) � �1 (in red). Results for the two dataset
combinations employed in this work are shown: solid for
base, dashed for pol. For each dataset combination, the
significant shift of the upper bounds on M⌫ to smaller
values is visually clear as one moves from the blue to the
red curves. The vertical black dotted-dashed line corre-
sponds to the minimal mass of M⌫,min ⇡ 0.1 eV allowed
by neutrino oscillation data within the inverted hierarchy.

FIG. 1. One-dimensional posterior probabilities of the sum of
the three active neutrino masses M⌫ (in eV) for three cases:
the w0waCDM generic DDE case which allows for values of
w both smaller than or larger than �1 (in blue), the ⇤CDM
case (in black), and the non-phantom dynamical dark energy
(NPDDE) model with w(z) � �1 (in red). Results have been
obtained using a Bayesian analysis that marginalizes over all
applicable w0, wa values, and are shown for the two dataset
combinations employed in this work as described at the be-
ginning of Sec. III: solid for base (using CMB, BAO, and
SN data), dashed for pol (also including CMB polarization
at small scales). The vertical black dotted-dashed line corre-
sponds to the minimal mass of M⌫,min ⇡ 0.1 eV allowed by
neutrino oscillation data within the inverted hierarchy.
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FIG. 4. One-dimensional posterior probabilities of the sum
of the three active neutrino masses M⌫ (in eV) for a selection
of cosmological models with w0 and wa fixed, described in
Sec. IV C. Models a)-d) have w0 and wa fixed to values sat-
isfying the condition w(z) � �1, and are represented by the
dashed light blue, dashed purple, dashed yellow, and dashed
red curves respectively. Models e) and f) have w0 and wa

fixed to values not satisfying the condition w(z) � �1, and
are represented by the dashed dark blue and dashed green
curves respectively. The ⇤CDM result corresponds to the
solid black line. The region where w(z) � �1 is satisfied is
shaded in green and labeled “Non-phantom”; conversely, the
region where w(z) � �1 is not satisfied is shaded in pink
and labeled “Phantom”. It is clear that the bounds on M⌫

for models where w0 and wa are fixed to values satisfying
w(z) � �1 are always tighter than the ⇤CDM bound. There-
fore, a Bayesian analysis marginalizing over the range of w0,
wa values satisfying w(z) � �1 is expected to obtain a bound
on M⌫ which is slightly tighter than the ⇤CDM one, as shown
by the results in Sec. IV A.

mass hierarchy by neutrino oscillation data.
Should non-cosmological probes such as long-baseline

neutrino oscillations experiments (for example T2K [183],
NOvA [184], or DUNE [185]) establish that the neu-
trino mass hierarchy is inverted, the viability of dark
energy models with w(z) � �1 could be jeopardized.
This conclusion holds if we exclude exotic physics at
play in the cosmological neutrino sector and/or in the
gravitational sector. Examples of such exotic models are
those with non-standard neutrino interactions predict-
ing a vanishing neutrino energy density today [139] or
mass-varying neutrinos [186–189], and models of modi-
fied gravity where the bounds on M⌫ could be signifi-
cantly different from those in ⇤CDM [190–198].

Finally, we quantify the preference for the normal hi-
erarchy within NPDDE models in terms of probability
odds (pNH : pIH). We adopt the methodology outlined in
Sec. III. For the NPDDE model, where w(z) � �1, we

find that the normal hierarchy is mildly preferred with
posterior odds ⇠2:1 for the base dataset and ⇠3:1 for the
pol dataset.

We compare these figures to those obtained in the
generic w0waCDM model. In this case, we find no pref-
erence for any of the two hierarchies for both the base
and pol datasets (posterior odds of ⇠1:1). When assum-
ing the standard ⇤CDM cosmological scenario, we find
a mild preference for normal hierarchy of ⇠2:1 for both
the base and pol dataset combinations.

Finally, in Appendix A, we provide an alternative ap-
proach to quantify the preference for the normal hierar-
chy. This alternative approach is based on the Akaike
Information Criterion (AIC) estimator for the relative
quality of statistical models. The findings are qualita-
tively in agreement with those reported in this section.

V. SUMMARY AND DISCUSSION

A dynamical dark energy (DDE) component driving
cosmic acceleration provides an alternative to the cos-
mological constant. In this work, we have explored cos-
mological constraints on the sum of the three active neu-
trino masses M⌫ within DDE models. We parametrize
the dark energy equation of state (EoS) as a function
of redshift z through the usual CPL parametrization
w(z) = w0 + waz/(1 + z). Furthermore, we impose the
requirement that the EoS satisfies w(z) � �1 throughout
the expansion history. We refer to this class of models as
non-phantom dynamical dark energy (NPDDE). We em-
ploy a combination of CMB, BAO and SNeIa measure-
ments. We denote by base the dataset combination not
including CMB polarization data at small scales, and by
pol the dataset combination which includes these CMB
polarization data.

The conclusions we reach are threefold:

• We find that the constraints on M⌫ assuming a
NPDDE model are slightly tighter than those ob-
tained within the standard ⇤CDM scenario. This is
the opposite of what is found when a generic DDE
model with EoS allowed to enter the region where
w(z) < �1 (w0waCDM model) is assumed. More
in detail, we find M⌫ < 0.13 eV at 95% C.L. for the
base dataset and M⌫ < 0.11 eV for the pol dataset
in a NPDDE model. These figures can be compared
to M⌫ < 0.16 eV at 95% C.L. for the base dataset
and M⌫ < 0.13 eV for the pol dataset in a ⇤CDM
model. For the w0waCDM model, we find instead
M⌫ < 0.41 eV at 95% C.L. for the base dataset
and M⌫ < 0.37 eV for the pol dataset. We pro-
vide a thorough data-supported physical and sta-
tistical explanation of these results. The explana-
tion is based on the effects of massive neutrinos and
dark energy on the background cosmological evolu-
tion, as well as on the Bayesian statistical method
adopted.

Chevalier & Polarsky’01 &Linder’03 NON-PHANTOM REGION


?

Vagnozzi et al’18
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NPDDE model where w(z) � �1, and the grey con-
tours for the more generic w0waCDM model where also
w(z) < �1 is allowed. The horizontal dashed line cor-
responds to M⌫,min ' 0.1 eV, the minimal value allowed
by neutrino oscillation data in the inverted hierarchy sce-
nario. The difference between the blue contours (⇤CDM)
and the red contours (NPDDE model) is compatible with
the shifts in H0 and M⌫ required to keep ⇥s fixed. The
green band in Fig. 2 corresponds to the 68% C.L. range
on H0 inferred by direct measurements from the Hubble
Space Telescope [153, 154]. From Fig. 2, it is clear that
the tension between direct measurements and cosmolog-
ical estimates of H0 is not resolved, and actually wors-
ened, within a NPDDE model. The tension can be par-
tially alleviated by a generic dark energy component (the
w0waCDM model) able to access the region w(z) < �1
(grey contours) [155–179]. We have checked that similar
considerations apply to the corresponding contour plot
obtained with the pol dataset.

From Fig. 2 we also see that the anti-correlation (de-
generacy) between M⌫ and H0 is weakened when moving
from ⇤CDM (blue) to NPDDE models (red). The mag-
nitude of the degeneracy is reflected by the tilt of the
main axes of the ellipsoidal M⌫-H0 contours. The con-
tour in the ⇤CDM case is visibly more inclined than the
NPDDE one. The weakening of the M⌫-H0 degeneracy
can be rigorously quantified by computing the correlation
coefficient between the two parameters. The correlation
coefficient between two parameters i and j, Rij , is defined
as Rij = Cij/

p
CiiCjj , where C is the covariance matrix

of the cosmological parameters (in our case i = M⌫ and
j = H0), estimated from our MCMC runs. For the base
[pol ] dataset, we find a correlation coefficient of �0.43
[�0.50] in the ⇤CDM case, which is lowered to �0.14
[�0.16] in the NPDDE case. Therefore, the correlation
between the two parameters is strongly reduced in mov-
ing from ⇤CDM to NPDDE models.

We shall now demonstrate that the late-time expan-
sion rate E(z) is higher in a Universe with w(z) � �1
compared to ⇤CDM. We shall also identify the redshift
range in which this effect is most prominent. We define
the following quantity:

E(z) ⌘
✓

E(z)|⇤CDM

E(z)|NPDDE

◆2
�����
⌦m ,⌦DE,0

� 1 , (7)

where |⇤CDM and |NPDDE indicate that E(z) is evaluated
in a ⇤CDM Universe or in a Universe with w(z) � �1
respectively. The notation |⌦m ,⌦DE,0 denotes that ⌦m =
⌦c+⌦b+⌦⌫ and ⌦DE,0 are kept fixed when moving from
⇤CDM to NPDDE. E(z) = 0 therefore corresponds to the
⇤CDM case. A negative E(z) instead indicates that the
expansion rate normalized by H0 is higher in the NPDDE
model compared to ⇤CDM. Note that E(z) is closely re-
lated to other diagnostics used in the literature to probe
the DE evolution, such as the Om diagnostic [180]. In
Fig. 3, E(z) is plotted for three choices of w0, wa. All of
the choices satisfy the stability priors imposed by Eq. (2)

FIG. 2. Two-dimensional probability contours in the H0�M⌫

plane. The blue contours are obtained for the ⇤CDM model,
the red contours are for a dynamical dark energy model
with EoS parametrized by Eq. (1) and satisfying w(z) � �1
(NPDDE), and the grey contours are for a generic dark en-
ergy model with EoS parametrized by Eq. (1). The green
band indicates the 68% C.L. constraint of H0 from direct
measurements of the Hubble Space Telescope [153, 154]. The
horizontal dashed line corresponds to M⌫,min ' 0.1 eV, the
minimal value for the sum of the neutrino masses allowed in
the inverted hierarchy scenario by neutrino oscillation data.
When moving from the ⇤CDM contours (blue) to models with
w(z) � �1 (red), the shifts of H0 and M⌫ to smaller values
are evident. These shifts are necessary to keep the angular
scale of the sound horizon at recombination ⇥s fixed, see dis-
cussion in the main text. It is also clear that the M⌫-H0

degeneracy is weakened when moving from ⇤CDM to mod-
els with w(z) � �1 (NPDDE). For further information, see
discussion in main text concerning the M⌫-H0 correlation
coefficient, which is reduced from �0.43 (⇤CDM) to �0.14
(NPDDE). The tension between direct measurements of H0

and cosmological estimates is not resolved by a dark energy
component with w(z) � �1. The tension is partially allevi-
ated by a generic dark energy component which can access
the w(z) < �1 region (grey contours). The contour regions
are obtained for the base dataset combination of CMB, BAO
and SNeIa data, with no CMB small scale polarization data.
Similar considerations apply to the contours derived from the
combination which also includes small scale CMB polarization
data.

and ensure that w(z) � �1.
Figure 3 clearly shows that E(z) is negative at low red-

shifts, as expected from the above discussion. E(z) also
shows a minimum for z ⇡ 0.5 for values of w0 and wa

that are allowed by cosmological data. The four points
overlaid on the plot indicate the redshift of the four BAO
measurements we consider in this work. The grey shaded
band refers to the redshift coverage of the JLA Super-
novae Type-Ia sample we consider in this analysis. Thus,

DA(zLS) /
1

H0

Z zLS

0

dz

E(z)

Larger expansion rate in a universe with w(z) ≧ -1, lower diameter distance

To not to spoil CMB first peak, one needs to decrease either H0 and/or  Σmν 

If the hierarchy turns out to be inverted, dark energy (if dynamical) should be



The “Take Home” messages

• Neutrino masses leave key signatures in cosmological observables. 


• NO hints so far for neutrino masses!


• Neutrino masses@CMB: Early ISW, lensing 


• Neutrino masses@LSS: Free streaming 


• Geometrical probes (BAO) more powerful than shape measurements


• Σmν<0.12 eV (95%CL) from 2018 Planck TTTEEE+lensing plus BAO data


• Strong evidence (3.5σ) for NO mostly FROM OSCILLATION MEASUREMENTS


• Very futuristic 21 cm cosmological probes could provide the individual mi’s


• For non-phantom (physical) dynamical dark energy, Σmν bounds get tighter!




