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Questions for a pseudo statistician/physicist

1. What set of experiments we can build to optimise the chance of a discovery if you have no
strong theoretical prior?

2. What experiments can we build such that, once a discovery is made, we maximise the
information gained about the new particle?
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Efficient mapping of the maximum likelihood ratio
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What does this allow you to do?

* Euclidean distance estimators are computationally efficient. Clustering algorithms (such as
BallTree algorithms) allow for the efficient pairwise comparison of a large numbers of points.

 Oncethe BallTree is constructed, simply select a point and call for all other points within the
required distance. This allows for the efficient computation of confidence intervals across the

entire space.
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Physics Result: Model or Mass, but not both
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We consider the non-relativistic effective field theory for Dark Matter Direct Detection with two
future liquid noble gas experiments - XENONNT and Darkside20k

At high DM masses the mass and interaction cross section become degenerate. This is the
same region in which it is possible to constrain the DM-nucleon interaction. Only a small part
of the parameter space remains in which both can be constrained
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Summary

 We have defined a new statistical procedure to avoid the need to use
benchmark points in the parameter space.

* The method is general and applies to all counting experiments since its
foundation is a Poisson likelihood.

e Direct detection experiments can (unfortunately) only simultaneously
constrain the DM-nucleon interaction and mass for a small part of the
parameter space. There are some ways to get around this i.e. higher recoil
energies and inelastic signals.
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Euclideanized signals approximately match the standard
log-likelihood ratio test statistic

e Approximation tested by considering a

large number of random models 10 ,
(illustrated with 3 bins) ——- 420% deviation
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e Flat exposure used:

e Signal limited: No covariance and
high signal to noise
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o Systematics limited: Low signal to
noise with high covariance

e Poisson limited: Low signal to noise 0 5 4 6 8 10
with no covariance VTS, profile Likelihood
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