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Motivation
• Standard Model flavor puzzle. Observed patterns:

[Xing ’14]
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Motivation
• Standard Model flavor puzzle.

4x 3 masses, 2x 3 angles, 2x 1 CP violating phase(+2).
• Origin of CP violation?

- CP violation established
in quark sector,
consistent with SM (CKM). 3

- open question:
CP violation in lepton sector ?

- open question: Why
θ = (θ + arg det yuyd) < 10−10 ?
Why CPV only in FV processes?

• Flavor and CP are intertwined.
y The theory of flavor should also be a theory of CPV.

Goal: Understand origin of CPV⇒ hints for origin of flavor.
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Outline

– Standard Model CP: a special outer automorphism

– What is an outer automorphism?

– CP violation as consequence of certain symmetries

– Example (toy-)model: SU(3)→ T7 with CPV and θ = 0

– Conclusion
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Physical CP transformations
Physical observable: Asymmetry⇔ Basis–invariants, e.g. J .

εi→f =
|Γ(i→ f)|2 −

∣∣Γ(ı→ f)
∣∣2

|Γ(i→ f)|2 +
∣∣Γ(ı→ f)

∣∣2 ⇔ J = det
[
MuM

†
u,MdM

†
d

]
see also [Bernabéu, Branco, Gronau ’86], [Botella, Silva ’94]CP conservation: ε, J !

= 0.

To warrant this: need a map Mu/d →M∗u/d.
Equivalently:

L ⊃ c O (x) + c∗ O†(x) ⇒ Fields
CP7−−→ (Fields)

∗

CP

ΨDirac =

(
χL

ξ†R

)
χ

(L,−)
ξ†

(R,−)

χ†
(R,+)

ξ
(L,+)

CP CP

C C

P

P
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CP transformation in the Standard Model
In the Standard Model

SU(3)⊗ SU(2)⊗U(1) and SO(3, 1) ,

physical CP is described by a simultaneous outer
automorphism transformation of all symmetries which maps

ri ←→ ri
∗ ,(

e.g. (3,2)L
1/6 ←→

(
3,2

)R
−1/6

)
,

for all representations of all symmetries.
[Grimus, Rebelo ’95]

[Buchbinder et al. ’01]
[AT ’16]

Conservation of such a transformation warrants θ, δ��CP = 0.

Violation of such a transformation is implied by experiment, and
necessary requirement for baryogenesis. [Sakharov ’67]

However: Why δCKM ∼ O(1) while θexp < 10−10 ?
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What is an outer automorphism?
Example: Z3 symmetry, generated by a3 = id.

• All elements of Z3 : {id, a, a2}.
• Outer automorphism group (“Out”)

of Z3: generated by

u(a) : a 7→ a2.
(
think: u a u−1 = a2

)

Z3 id a a2

1 1 1 1
1′ 1 ω ω2

1′′ 1 ω2 ω
(ω := e

2π i/3
)

Group

Out

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a “symmetry of the symmetry”.

Concrete: Out is a 1:1 mapping of representations r 7→ r′.
Comes with a transformation matrix U , which is given by

Uρr′(g)U−1 = ρr(u(g)) , ∀g ∈ G .

(consistency condition) [Fallbacher, AT, ’15]
[Holthausen, Lindner, Schmidt, ’13]

- ρr(g): representation matrix for group element g ∈ G
- u : g 7→ u(g) : outer automorphism

CP

Out
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Physical CP trafo
r 7→ r′ = r∗

is a special case of this!

CP

Out
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Outer automorphisms of groups

Outer automorphisms exist for continuous & discrete groups.

There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the
symmetries of the corresponding Dynkin diagram.

Lie Group Out Action on reps
An>1 SU(N) Z2 r → r∗

Dn>4 SO(2N) Z2 r → r∗

E6 E6 Z2 r → r∗

Dn=4 SO(8) S3 ri → rj

all others � �
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Outer automorphisms of groups
Discrete groups:

Outer automorphisms of a discrete group are symmetries of the
character table (not 1:1).

T7 C1a C3a C3b C7a C7b

10 1 1 1 1 1

11 1 ω ω2 1 1

11 1 ω2 ω 1 1
31 3 0 0 η η∗

31 3 0 0 η∗ η

Z2 ∆(54) C1a C3a C3b C3c C3d C2a C6a C6b C3e C3f

10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 −1 −1 −1 1 1
21 2 2 −1 −1 −1 0 0 0 2 2
22 2 −1 2 −1 −1 0 0 0 2 2
23 2 −1 −1 2 −1 0 0 0 2 2
24 2 −1 −1 −1 2 0 0 0 2 2

31 3 0 0 0 0 1 ω2 ω 3ω 3ω2

31 3 0 0 0 0 1 ω ω2 3ω2 3ω

32 3 0 0 0 0 −1 −ω2 −ω 3ω 3ω2

32 3 0 0 0 0 −1 −ω −ω2 3ω2 3ω

s

s

s

s
s s

The outer automorphisms group of any

(“small”) discrete group can easily be

found with GAP [GAP] .

Group Out Action on reps

Z3 Z2 r → r∗

An6=6 Z2 r → r∗

Sn 6=6 � �

∆(27) GL(2, 3) ri → rj

∆(54) S4 ri → rj

· · ·
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Not this talk

Outer automorphisms by themself have interesting features:

• Allow to understand origin of “geometrical T violation”.
[Branco, Gerard, Grimus, ’83], [Fallbacher, AT, ’15]

• Deep connection to RGE flow of theories.

• Very useful tool to compute stationary points of potentials.
[Fallbacher, AT, ’15]

• Systematic origin of emergent symmetries.
[AT ’16]
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Physical CP transformation
We extrapolate from the SM to possible symmetries in BSM.

⇒ “Definition” of CP in words:

CP is a special outer automorphism transformation which maps all present symmetry
representations (global, local, space-time) to their complex conjugates.

[AT ’16]
This definition is consistent with the definitions in [Buchbinder et al. ’01] & [Grimus, Rebelo ’95]

Any such transformation:

• warrants physical CP conservation (if conserved),

⇒ must be broken (by observation).

Note that a physical CP transformation:

• does not have to be unique,

• does not have to be of order 2,
[Ecker, Grimus, Neufeld ’87], [Weinberg ’05]

[Chen, Fallbacher, Mahanthappa, Ratz, AT ’14]
[Ivanov, Silva ’15], [Ferreira et al. ’17]

• is, in general, not guaranteed to exist for a given symmetry
group. (It does exist for GSM!)
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Two types of groups (without mathematical rigor)

Group

Out

List of representations: r1, r2, . . . , rk, rk∗, . . .

Out in general : ri 7→ rj ∀ irreps i,j (1 : 1)

Criterion:
Is there an (outer) automorphism transformation that maps

ri 7→ ri
∗ for all irreps i ?

No
⇒ Group of “type I”

Yes
⇒ Group of “type II”

This tells us whether a CP transformation is possible, or not!
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Do CP transformations exist for all symmetries?

General answer: No.

For example: Discrete groups of type I:

G Z5 o Z4 T7 ∆(27) Z9 o Z3 . . .
SG id (20, 3) (21, 1) (27, 3) (27, 4)

• These are inconsistent with the trafo ri 7→ r∗i ∀ i.

⇒ CP transformation is inconsistent with a type I symmetry.
(assuming sufficient # of irreps are in the model)

There are models in which CP is violated
as a consequence of another symmetry.

[Chen, Fallbacher, Mahanthappa, Ratz, AT ’14]

The corresponding CPV phases are calculable and quantized (e.g. δ��CP = 2π/3, ...)
stemming from the necessarily complex Clebsch-Gordan coefficients of the “type I”
group. This has been termed “explicit geometrical” CP violation.

[Chen, Fallbacher, Mahanthappa, Ratz, AT ’14]
[Branco, ’15], [de Medeiros Varzielas, ’15]
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Do CP transformations exist for all symmetries?
On the contrary:

Semi-simple Lie groups are all of type II.

• There always exists an (outer) automorphism
transformation that maps all r 7→ r∗ simultaneously.

[Grimus, Rebelo ’95]

⇒ CP can only be violated (explicitly) if the number of
rephasing degrees of freedom is less than the number of
complex parameters. cf. e.g. [Haber, Surujon ’12]

This is the case in the Standard Model.

/ This just parametrizes CPV, there is no way to predict δ��CP.

Aside: There are models with higher-order CP transformations which allow for complex
couplings, yet conserve CP (groups of type II B).

[Chang, Mohapatra ’01], [Chen, Fallbacher, Mahanthappa, Ratz, AT ’14], [Ivanov, Silva ’15]
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Do type I groups occur in Nature?
• Discrete groups? → Crystals?

7 no type I point groups in 2D (SO(2)), 3D (SO(3)).
7 no type I subgroups of SU(2).
7 no type I subgroups of the Lorentzgroup.

(Open question: Type I “spacetime crystals”? [Wilczek ’12] ).
3 In ≥ 4D: crystals with type I point groups

[Fischer, Ratz, Torrado and Vaudrevange ’12]

• Discrete flavor symmetries?

• Many models with type I groups:

T7,∆(27),∆(54),PSL2(7), ...
e.g. [Björkeroth, Branco, Ding, de Anda, Ishimori, King, Medeiros Varzielas, Neder, Stuart et al. ’15-’18]

[Chen, Pérez, Ramond ’14], [Krishnan, Harrison, Scott ’18]

• These can originate from extra dimensions, e.g. in string
theory. [Kobayashi et al. ’06], [Nilles, Ratz, Vaudrevange ’12]

• Semi-realistic heterotic orbifold model with ∆(54) flavor
symmetry and geometrical CP violation.

[Nilles, Ratz, AT, Vaudrevange ’18]
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Example toy model:
CP violation with an unbroken CP transformation
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An interesting observation
Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

SU(3) ⊃ T7

Structure of outer automorphisms:

Out( su(3) ) ∼= Z2

ri ↔ ri
∗ ∀i 3

Out( T7 ) ∼= Z2

T7 C1a C3a C3b C7a C7b

10 1 1 1 1 1

11 1 ω ω2 1 1

11 1 ω2 ω 1 1
31 3 0 0 η η∗

31 3 0 0 η∗ η

ri��HH↔ ri
∗ ∀i 7

Note: Out( su(3) ) acts on the T7 ⊂ SU(3) subgroup as Out( T7 )!
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Toy model overview
Facts:
• SU(3) is consistent with a physical CP transformation.
• The T7 subgroup of SU(3) is inconsistent with a physical CP

transformation.

Question: How is CP violated in a breaking SU(3)→ T7?

Toy model: gauged SU(3) + complex scalar SU(3) 15-plet φ. [Ratz, AT ’16]

L = (Dµφ)
†

(Dµ φ)− 1

4
Gaµν G

µν,a − V (φ) ,

V (φ) = − µ2φ†φ+

5∑
i=1

λi I(4)i (φ) . with λi ∈ R

calculation enabled by SUSYNO [Fonseca ’11]

• VEV of the 15-plet 〈φ〉 breaks SU(3)→ T7. [Luhn, ’11], [Merle, Zwicky ’11]

• Out( su(3) ) ∼= Z2 → Out( T7 ) ∼= Z2; Out unbroken by VEV.

SU(3) o Z2
〈φ〉−−→ T7 o Z2; .
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CP violation in SU(3) → T7 toy model
[Ratz, AT ’16]

Name SU(3)
〈φ〉−−→ Name T7 mass

Aµ 8
Zµ 11 m2

Z = 7/3 g2 v2

Wµ 3 m2
W = g2 v2

φ 15

Reσ0 10 m2
Reσ0

= 2µ2

Imσ0 10 m2
Imσ0

= 0

σ1 11 m2
σ1

= −µ2 +
√

15λ5 v
2

τ1 3 m2
τ1

= m2
τ1

(µ, λi)

τ2 3 m2
τ2

= m2
τ2

(µ, λi)

τ3 3 m2
τ3

= m2
τ3

(µ, λi)

The action is invariant under the Z2 −Out transformation:

SU(3) T7

Aaµ(x) 7→ Rab P ν
µ Abν(Px) ,

φi(x) 7→ Uij φ
∗
j (Px) .

Wµ(x) 7→ P ν
µ W ∗ν (Px) ,

σ0(x) 7→ σ0(Px) ,

τi(x) 7→ τ∗i (Px) ,

Zµ(x) 7→ −P ν
µ Zν(Px) ,

σ1(x) 7→ σ1(Px) .

physical CP 3 physical CP 7
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CP violation in SU(3) → T7 toy model

• The VEV does not break the CP transformation, U〈φ〉∗ = 〈φ〉.
• However, at the level of T7, the SU(3)-CP transformation merges to Out( T7 ):

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3

Z2 −Out :

15 → 10 ⊕ 11 ⊕ 11 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 3

⇒ The Z2-Out is conserved at the level of T7, but it is not interpreted as a physical
CP trafo,

SU(3) o Z(CP)
2

〈φ〉−−→ T7 o Z�
�XX(CP)

2 .

• There is no other possible allowed CP transformation at the level of T7 (type I).
• Imposing a transformation rT7,i ↔ rT7,i

∗ enforces decoupling, g = λi = 0.
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CP violation in SU(3) → T7 toy model
Explicit crosscheck: compute decay asymmetry.

εσ1→W W∗ :=
|M (σ1 →W W ∗)|2 −

∣∣M (σ∗1 →W W ∗)
∣∣2

|M (σ1 →W W ∗)|2 +
∣∣M (σ∗1 →W W ∗)

∣∣2 .

Contribution to εσ1→W W∗ from interference terms, e.g.∣∣∣∣∣∣∣∣∣∣∣
σ1

v

W ∗

W

+

τ2

τ2

σ1

W ∗

W

v v

v

+
τ2

τ2

σ1

W ∗

W

v v

v ∣∣∣∣∣∣∣∣∣∣∣

2

,

corresponding to non-vanishing CP-odd basis invariants

I1 =
[
Y †σ1WW∗

]
k`

[
Yσ1τ2τ∗2

]
ij

[
Yτ∗2WW∗

]
imk

[(
Yτ∗2WW∗

)∗]
jm`

,

I2 =
[
Y †σ1WW∗

]
k`

[
Yσ1τ2τ∗2

]
ij

[
Yτ∗2WW∗

]
i`m

[(
Yτ∗2WW∗

)∗]
jkm

.

3 Contribution to εσ1→W W∗ is proportional to Im I1,2 6= 0.

3 All CP odd phases are geometrical, I1 = e2π i/3 I2.
3
(
εσ1→W W∗

)
→ 0 for v → 0, i.e. CP is restored in limit of vanishing VEV.
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Natural protection of θ = 0
Topological vacuum term of the gauge group

Lθ = θ
g2

32π2
Gaµν G̃

µν,a ,

is forbidden by Z2 −Out (the SU(3)-CP transformation).

The unbroken Out

Z2 −Out : Wµ(x) 7→ P ν
µ W ∗ν (Px) , Zµ(x) 7→ − P ν

µ Zν(Px) ,

still enforces θ = 0 even though CP is violated for the physical T7 states.

Physical scalars (T7 singlets and triplets):

Reσ0 =
1
√

2
(φ1 + φ∗1) , Imσ0 = −

i
√

2
(φ1 − φ∗1) ,

σ1 = φ2 ,τ1τ2
τ3

 =

V11 V12 V13

V21 V22 V23

V31 V32 V33

T2

T
∗
3
T1

 .
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Natural protection of θ = 0
Topological vacuum term of the gauge group

Lθ = θ
g2

32π2
Gaµν G̃

µν,a ,

is forbidden by Z2 −Out (the SU(3)-CP transformation).

The unbroken Out

Z2 −Out : Wµ(x) 7→ P ν
µ W ∗ν (Px) , Zµ(x) 7→ − P ν

µ Zν(Px) ,

still enforces θ = 0 even though CP is violated for the physical T7 states.

Possible application to strong CP problem?
• Starting point: CP conserving theory based on

[GSM ×GF] o CP .

• break GF o CP −→ Type I o Out.

y CP broken in flavor sector but not in strong interactions.
• Main problem: finding realistic model based on Type I group allowing for outer

automorphism.
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Summary

• Outer automorphisms are symmetries of symetries
(→ think of them as mappings among the irreps).

• CP is a special outer automorphism which maps all present
representations to their complex conjugate.

• There are “type I” groups, they are inconsistent with CP
transformations.
⇒ CPV (explicit/spontaneous) with quantized phases.

• Example for appearance of type I symmetries: potentially
realistic heterotic orbifold string theories.

[Nilles, Ratz, AT, Vaudrevange ’18]

• Explicit toy model: type I as subgroup of type II group

gauged SU(3)
〈15〉−−−→ T7 with weak CPV but θSU(3) = 0.
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Thank You
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Backup slides
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CP as a special outer automorphism
One generation of (chiral) fermion fields with gauge symmetry [Ta, Tb] = ifabc Tc

L = i Ψ γµ
(
∂µ − i g TaW

a
µ

)
Ψ−

1

4
Gaµν G

µν,a .

The most general possible CP transformation:

Wa
µ (x) 7→ Rab P ν

µ W b
ν (Px) ,

Ψiα(x) 7→ ηCP U
ij Cαβ Ψ∗jβ(Px) .

[Grimus, Rebelo,’95]

For this to be a conserved symmetry of the action, require:

(i) Raa′ Rbb′ fa′b′c = fabc′ Rc′c ,

(ii) U (−TT
a )U−1 = Rab Tb ,

(iii) C (−γµT) C−1 = γµ .

Meaning of these equations:
(i) CP is an (outer) automorphism of the gauge group.
(ii) CP maps representations to their complex conjugate representations.

(
Ta 7→ −TT

a

)
(iii) CP is an outer automorphism of the Lorentz group which maps representations

to their complex conjugate representation.
(
χL 7→ (χL)

†)
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Basically two types of discrete groups
• Groups which do not allow for CP transformation: Type I

Fine print: assuming sufficient # of irreps are there

G Z5 o Z4 T7 ∆(27) Z9 o Z3 . . .
SG id (20, 3) (21, 1) (27, 3) (27, 4)

• Groups which do allow for CP transformation: Type II
Among those: all groups which allow for real CG’s: Type II A

G S3 A4 T′ S4 A5

SG id (6, 1) (12, 3) (24, 3) (24, 12) (60, 5)

But also: CP trafo w/o real CG’s: Type II B

G Σ(72) ((Z3 × Z3) o Z4) o Z4

SG id (72, 41) (144, 120)

Type II A groups: CP violation completely analogue to well–known case: SU(N)
(i.e. it depends on # of rephasing d.o.f.’s vs # complex couplings)

Type II B groups: CP violation tied to certain operators

II

II A
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“Physical” CP transformation

Recall: e.g. complex scalar field σ, with field operator

σ̂(x) =

∫
d̃p
{
â(~p) e−i p x + b̂

†
(~p) ei p x

}
.

Physical CP transformation of the complex scalar field

CP : σ(x) 7→ eiϕ σ∗(Px) ,

corresponds to

CP : â(~p) 7→ eiϕ b̂(−~p) and b̂
†
(~p) 7→ eiϕ â†(−~p) .

Note:

“matter”: â(†) “anti-matter”: b̂
(†)

.
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Toy model details
Complex scalar φ in T7-diagonal basis of SU(3): (in unitary gauge)

φ =

(
v + φ1,

φ2√
2
,
φ∗2√

2
, φ4, φ5, φ6,

φ7√
2
,
φ8√

2
,
φ9√

2
, φ10, φ11, φ12,

φ∗7√
2
,
φ∗8√

2
,
φ∗9√

2

)
.

T7 representations of the components:

φ1 =̂ 10 , φ2 =̂ 11 ,

T1 := (φ4, φ5, φ6) =̂ 3 , T2 := (φ7, φ8, φ9) =̂ 3 ,

T 3 := (φ10, φ11, φ12) =̂ 3 .

The physical scalars are

Reσ0 =
1
√

2
(φ1 + φ∗1) , Imσ0 = −

i
√

2
(φ1 − φ∗1) ,

σ1 = φ2 ,τ1τ2
τ3

 =

V11 V12 V13

V21 V22 V23

V31 V32 V33

T2

T
∗
3
T1

 .

The physical vectors are

Zµ =
1
√

2

(
Aµ7 − iAµ8

)
, Wµ

1 =
1
√

2

(
Aµ4 − iAµ1

)
,

Wµ
2 =

1
√

2

(
Aµ5 − iAµ2

)
, Wµ

3 =
i
√

2

(
Aµ6 − iAµ3

)
.
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Toy model details
The VEV in this basis is simply

〈φ〉1 = v and 〈φ〉i = 0 for i = 2, . . . , 15 ,

where

|v| = µ× 3

√
7

2

(
−7
√

15λ1 + 14
√

15λ2 + 20
√

6λ4 + 13
√

15λ5

)−1/2
.

The masses of the physical states are

m2
Z =

7

3
g2 v2 and m2

W = g2 v2 .

m2
Reσ0

= 2µ2 , m2
Imσ0

= 0 ,

m2
σ1

= − µ2 +
√

15λ5 v
2 .

The massless mode is the goldstone boson of an additional U(1) symmetry of the
potential. It can be avoided by either
• gauging the additional U(1),
• or breaking it softly by a cubic coupling of φ.

Andreas Trautner CP Violation caused by another symmetry, 7.9.18 30/ 23



Toy model details

T7 invariant couplings (ω := e2πi/3)

Yσ1WW∗ =
v g2

√
6

e−π i/6 diag(1, ω, ω2) , Yσ1τ2τ∗2 = v yσ1τ2τ∗2 diag(1, ω, ω2) ,

[
Yτ∗2WW∗

]
121

=
[
Yτ∗2WW∗

]
232

=
[
Yτ∗2WW∗

]
313

= v g2 yτ∗2WW∗ ,[
Yτ∗2WW∗

]
ijk

= 0 (else) .
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Toy model details

yσ1τ2τ
∗
2

=
1

504
√

3

{
V

2
21

[
−14
√

10
(
17 + 5

√
3 i
)
λ1 + 84

√
30
(√

3− i
)
λ2

− 240
(
1 +
√

3 i
)
λ4 −

√
10
(
197− 55

√
3 i
)
λ5

]
+ 8V

2
22

[
28
√

10
(
1−
√

3 i
)
λ1 − 14

√
30 iλ2 + 112

√
3 iλ3

−
(
30− 26

√
3 i
)
λ4 +

√
10
(
20−

√
3 i
)
λ5

]
+ 8V

2
23

[
28
√

10
(
1 +
√

3 i
)
λ1 − 14

√
30 iλ2 − 168λ3

+
(
6 + 65

√
3 i
)
λ4 − 4

√
10
(
1− 2

√
3 i
)
λ5

]
+ 8V21 V22

[
−35
√

10
(
1−
√

3 i
)
λ1 + 21

√
30
(√

3 + i
)
λ2

− 56
(
3 +
√

3 i
)
λ3 + 6

(
1 + 17

√
3 i
)
λ4 −

√
10
(
67 + 19

√
3 i
)
λ5

]
+ 4V21 V23

[
−28
√

10
(
2 +
√

3 i
)
λ1 − 42

√
30
(√

3 + i
)
λ2

+ 30
(
11 + 3

√
3 i
)
λ4 −

√
10
(
31 + 11

√
3 i
)
λ5

]
− 8V22 V23

[
14
√

10λ1 − 14
√

30 iλ2

+ 10
(
3 + 5

√
3 i
)
λ4 +

√
10
(
1− 3

√
3 i
)
λ5

]}
and

yτ∗2WW∗ = −
√

2

3
(2V21 + V22 + 2V23) .
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CP symmetries in settings with discrete G

Group G with au-
tomorphisms u

there is
a class–

inverting u

Type II: u de-
fines a physical

CP transformation

there is an
involutory u
for which all
FS(1)

u are +1

Type II A: there is
a CP basis in which

all CG’s are real

Type II B: there
is no basis in which

all CG’s are real

Type I: generic settings
based on G do not
allow for a physical
CP transformation

no

yes

yes

no

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, ’14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FSu(Backup slides)
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Twisted Frobenius–Schur indicator

Criterion to decide: existence of a CP outer automorphism.
y can be probed by computing the

“twisted Frobenius–Schur indicator” FSu

FSu(ri) :=
1

|G|
∑
g∈G

χri(g u(g))

( χri(g)
: Character )

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

FSu(ri) =

{
+1 or − 1 ∀ i, ⇒ u is good for CP,
different from ±1, ⇒ u is no good for CP.

In analogy to the Frobenius–Schur indicator

FS
�Au

(ri) = +1,−1, 0 for real / pseudo–real / complex irrep.
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