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Idea

The quasi-local energy definition of Brown and York is able to discriminate between the uncompactified Minkowski
spacetime and the toroidal Kaluza-Klein compactification.

/ Energy in GR \ / Quasi-local energy \

The energy momentum cannot be a four-vector because it can Associate to a given hypersurtface of a spacetime,
always be made to vanish locally in a free falling frame.
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/ The quasi-local energy (QLE) is defined as
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Hence, the extrinsic curvature tensor yields K, = (0, 7 Buplot! )

Everything looks the same as in the previous case, but now the

The trace of the extrinsic integration is different for the compact coordinate Y5 .
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curvature is given by a
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40 Outlook
30 l ﬂhe QLE could provide an energetical argument in favom

| - Both QLES collapse to the compactified or uncompactified spacetimes.
01 QLE of M, X §, same value

i More general setups need to be studied, such as the introduction

10 of fluxes in order to stabilise the compact dimensions.
S — 035 L It could be interesting to see whether the QLE can be used to

| | | O | | compute the total energy of full spacetimes in a more

/L =— covariant way.
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