

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

ETP Meeting

Philipp Dorwarth, Torben Ferber, Lea Reuter, Slavomira Stefkova | 05th June 2023 Philipp.Dorwarth@student.kit.edu

www.kit.edu

The Belle II Experiment

SuperKEKB • Asymmetric $e^+e^$ collider • $\Upsilon(4S)$ resonance \rightarrow B-factory collision point Belle II detector Positron ring **Electron-Positron** inear accelerator Positron damping ring

2

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

The Belle II Experiment

2

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

The Central Drift Chamber (CDC) of Belle II

- The L1 trigger system uses the following information from the CDC to identify relevant events.
 - Hit information
 - ADC Count: Pulse height information, referring to the deposited energy
 - TDC Count Timing information

Axial wire layer

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

The Central Drift Chamber (CDC) of Belle II

- The L1 trigger system uses the following information from the CDC to identify relevant events.
 - Hit information
 - ADC Count: Pulse height information, referring to the deposited energy
 - TDC Count Timing information

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Institute of Experimental Particle Physics (ETP)

3 June 5, 2023

The Central Drift Chamber (CDC) of Belle II

Belle II simulation (own work), (BGx1.0, nominal phase 3) • μ⁺ The L1 trigger system uses the following information from the CDC to identify relevant $e^+e^- \rightarrow A'h'$, μ^{-} $h' \rightarrow \mu^+ \mu^ A' \rightarrow \chi_1 \chi_2$ events. 100 Hit information ADC Count: Pulse height information, referring to the deposited 50 energy *TDC Count* Timing information y (cm) -50 9 Superlayers Axial wire layer -100 μ^{-} : p=(-1.6457, -2.8503, 2.3809) GeV. E=4.0636 GeV. n_{layers} = 24, n_{wires} e⁺: p=(0.2472, 0.2664, 0.1377) GeV, E=0.3886 GeV e⁻: p=(1.9768, 1.5876, 0.3615) GeV, E=2.5610 GeV Stereo wire layer -100-50 50 100

June 5, 2023 Philipp Dorwarth – F

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Motivation

Searches for displaced vertices

Displaced vertices are an important signature in searches for new physics¹

Single displaced vertex examples

Signal decay with dark photon A' and dark Higgs h':

- $e^+e^- \rightarrow A'h'$
- $h' \rightarrow \mu^+ \mu^-$,

$$A' \to \chi_1 \chi_2$$

• $\chi_2 \rightarrow \chi_1 e^+ e^-$ (outside of CDC)

Project Goal:

Improve Track and Vertex Finding using Graph Neural Networks (GNN)

> Online (real-time, < 2 μs)

Offline

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

GNN-Based Track- and Vertex-Finding Pipeline

- Incorporate signal hits and signal edges in the graph-building
- Identify signal hits to reduce the input for the track finding

E Limited computing resources for online application demand small neural networks

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

5

GNN-Based Track- and Vertex-Finding Pipeline

- Incorporate signal hits and signal edges in the graph-building
- Identify signal hits to reduce the input for the track finding

5

E Limited computing resources for online application demand small neural networks

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Graph-Building - Approach

- Graphs are built for each superlayer using layer pairs
- Layer pairs are considered if within a distance of $\Delta l = 0, 1, 2$
- Each node of a layer is compared with all nodes in the corresponding layer
- Edges are built between nodes that meet defined distance criteria

Graph-Building - Approach

- Layer pairs are considered if within a distance of $\Delta l = 0, 1, 2$
- Each node of a layer is compared with all nodes in the corresponding layer
- Edges are built between nodes that meet defined distance criteria

Graph building

per Superlayer

6

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Footure Applysis for Edge C

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Graph-Building – Define Patterns

Find the best suiting pattern for the *GNN-pipeline*. Different patterns need to be investigated to understand importance of connections in different wire and layer distances.

7 June 5, 2023

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

True graph edges are defined from the sequences of CDC-hits originating from signal particles

- In this analysis, an approximation for the hit sequence is used
 - CDC-hits are expected to be neighboring
 - Tracks are expected to be mainly outwards going

 $\{v_i\}$: Nodes originating from the same signal Monte Carlo particle

Graph-Building – Evaluation

Eventdisplay of the CDC with graph

- This analysis uses 30 000 simulated events
- Uniformly distributed vertices, up to r = 100 cm
- Full background (nominal phase 3)

efficiency = $\frac{n_{\text{incl. true graph edge}}}{n_{\text{true graph edges}}}$	S
$purity = \frac{n_{\text{incl. true graph edges}}}{n_{\text{total edges}}}$	

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Graph-Building – Evaluation

- This analysis uses 30 000 simulated events
- uniformly distributed vertices, up to r = 100 cm
- Full background (nominal phase 3)
- Efficiency increases by incorporating more edges with a trade-off in purity

$$efficiency = \frac{n_{\text{incl. true graph edges}}}{n_{\text{true graph edges}}}$$
$$purity = \frac{n_{\text{incl. true graph edges}}}{n_{\text{total edges}}}$$

June 5, 2023 Phili

9

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

10June 5, 2023Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,
Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

^{1 &}lt;u>Performance of a geometric deep learning pipeline for HL-LHC particle tracking</u> 2 Interaction Networks for Learning about Objects, Relations and Physics

^{1 &}lt;u>Performance of a geometric deep learning pipeline for HL-LHC particle tracking</u> 2 Interaction Networks for Learning about Objects, Relations and Physics

1 <u>Performance of a geometric deep learning pipeline for HL-LHC particle tracking</u> 2 <u>Interaction Networks for Learning about Objects, Relations and Physics</u>

10 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Feature Applysic for Edge Classifier

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

1 <u>Performance of a geometric deep learning pipeline for HL-LHC particle tracking</u> 2 <u>Interaction Networks for Learning about Objects, Relations and Physics</u>

10 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Feature Analysis for Edge Classifier

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

1 <u>Performance of a geometric deep learning pipeline for HL-LHC particle tracking</u> 2 <u>Interaction Networks for Learning about Objects, Relations and Physics</u>

10 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Feature Analysis for Edge Classificatio

Institute of Experimental Particle Physics (ETP)

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

10

June 5, 2023

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Input Feature Analysis - Methodology

- The aim of this study is to obtain insights into the ADC and TDC distributions and compare the simulation with Data
- Own simulation: $e^+e^- \rightarrow \mu^+\mu^-$

Input Feature Analysis - Methodology

- The aim of this study is to obtain insights into the ADC and TDC distributions and compare the simulation with Data
- Own simulation: $e^+e^- \rightarrow \mu^+\mu^-$
- Overall, the shape of the distributions shows good agreement
- Additional application of corrections expected to improve the agreement

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Input Feature Analysis - Methodology

- The aim of this study is to obtain insights into the ADC and TDC distributions and compare the simulation with Data
- Own simulation: $e^+e^- \rightarrow \mu^+\mu^-$
- Overall, the shape of the distributions shows good agreement
- Additional application of corrections expected to improve the agreement

Agreement for the selection was found to be sufficient for the ADC & TDC comparison

Philipp Dorwarth - Philipp.Dorwarth@student.kit.edu,

June 5, 2023 Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II Institute of Experimental Particle Physics (ETP)

11

Input Feature Analysis - ADC

Input feature analysis and MC/Data comparison of dimuon events
 $e^+e^- \rightarrow \mu^+\mu^-$

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Input Feature Analysis - ADC

Input feature analysis and MC/Data comparison of dimuon events $e^+e^- \rightarrow \mu^+\mu^-$

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Edge Classification - ADC

■ Input feature analysis and MC/Data comparison of dimuon events ■ $e^+e^- \rightarrow \mu^+\mu^-$

Data and MC Comparison

ADC and TDC are discriminatory and provide orthogonal information

Simulation must be possibly adjusted to align more strongly with the data for training of GNN-Pipeline

Edge Classification – CDC Edge Prediction

Belle II simulation (own work), (BGx1.0, nominal phase 3)

13

Training with a train set of 24000 simulated events

- Independent models are trained for each graphbuilding pattern
- Use of full background level
- Input features: x, y, TDC, ADC
- **Edge** attributes: Δr , $\Delta \phi$
- IN consist of 1987 trainable parameters
- Threshold is obtained by maximizing the F1 score

$$F1_{true_edge} = 2 \frac{class. \ true \ edge \ pur. \times class. \ true \ edge \ eff.}{class. \ true \ edge \ pur. + class. \ true \ edge \ eff.}$$

ass. true edge eff. =
$$\frac{n_{\text{incl. pred. true edge}}}{n_{\text{incl. true edges}}}$$

class.	true e	edae mur	mur -	$n_{\rm incl.}$ pred. true edges
		euye	euge pur. –	$n_{\rm total}$ predicted edges

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Edge Classification – True Graph Edges

- Efficiency and purity of the estimated true graph after edge classification
- $\Delta l = 2$ connections influence purity

14 June 5, 2023 Philipp Dorwarth - Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Edge Classification – True Graph Edges

- Efficiency and purity of the estimated true graph after edge classification
- $\Delta l = 2$ connections influence purity
- $\Delta l = 0$ connections influence efficiency

June 5, 2023

14

Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Edge Classification – Clean-Up

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Foature Analysis for Edge C

15

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Edge Classification – Clean-Up

- model 10 and model 8 achieve both high efficiency
 - Trade off between purity and efficiency
 - Purity and efficiency can be adjusted with the threshold for each model
- High computational complexity

15

Philipp Dorwarth - Philipp.Dorwarth@student.kit.edu,

June 5, 2023 Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Online Application – Limitations

Precision:

PyG employs high-precision (32 Bit) operations.

For FPGA, lower precision arithmetic may be needed, potentially affecting network accuracy.

Resource Consideration:

Space multiplexing, used over time multiplexing, increases FPGA resource usage.

The size of the IN and input graphs directly impacts resource usage.

Memory Limitations:

FPGA memory is limited and reliance on external memory can increase latency.

Optimizing input graphs and neural network model sizes is key for low latency.

Input Resolution:

Anticipated reduction in input feature resolution may require modification in data processing techniques and consideration of relative information.

Limitations when comparing PyTorch Geometric to the implementation of FPGAs

16 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Online Application - Adaption and Mitigation

- Resolution Reductions:
 - Limited CDC sense wire information.
 - TDC resolution drop (1 ns to 2 ns) & absolute value becomes meaningless.
 - Decreased ADC count resolution & sampling rate.
- Adaption Strategies:
 - Using only trigger wires.
 - TDC counts binned in twos.
 - Remove TDC as input feature.
- Mitigation Strategies:
 - ▲TDC used as an additional edge attribute.
 - ADC counts are grouped into three ranges.

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

- Efficiency and purity of the estimated true graph after edge classification
- 1.947 trainable parameters
- Input features: x, y, ADC (reduced resolution)
- Edge attributes: Δr , $\Delta \phi$, ΔTDC (reduced resolution)

- Efficiency and purity of the estimated true graph after edge classification
- 1.947 trainable parameters
- Input features: x, y, ADC (reduced resolution)
- Edge attributes: Δr , $\Delta \phi$, ΔTDC (reduced resolution)
 - A drop of approximately 10 pp. A trade-off between efficiency and purity
- Adjust to the needs of trackand vertex finding

Summary & Outlook

Summary

- Developed graph-building models for effective capture of particle track information
- Identified crucial edges for performance measurements
- Achieved encouraging results in edge classification and CDC clean-up offline and online
- This study and related studies have encouraged the Belle II collaboration to make ADC and TDC information available on the trigger level

Outlook

Working together with ITIV (Department of Electrical Engineering and Information Technology at KIT) to implement the GNN-pipeline on FPGA for real-time application

- First implementation of graph building
- Detailed analysis of the subsequent performance of the IN on hardware will provide insights for optimization requirements.

Further Work

- Devised additional metrics for graph-building
- Introduced metric to compare patterns after classification
- Studied computational complexities of various graph-patterns

June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Craph Building and Input Feature Analysis for Edge Cli

5, 2023 Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Data (exp 24, run 888)

0.764

0.949

0.878

0.947

0.944

0.569

0.755 0.996

0.955

0.998

0.955

0.684

MC (simulation)

Belle II, own work

100

Data: exp 24 run 888: skim: accept_mumutight

Evente with two reconstruct

Selection

- Events with two reconstructed tracks
 - each with a Muon PID > 0.9

Selection

Theta cut

PID cut

L1 selection *stt*

Dimuon mass cut

Total efficiency

Dimuon track selection

- $\theta = [32.2^{\circ}, 128.7^{\circ}]$ (barrel region)
- Dimuon mass cut: $(m_{\gamma\gamma} > 8 \ GeV/c^2)$
- TDC_{CDCHit} < 5021</p>

Order No

2

3

4 5

 μ^+ RECONSTRUCTED

RECONSTRUCTED

at Belle II Institute of Experimental Particle Physics (ETP)

20

Input Feature Analysis - Track Properties

- The aim of this study is to obtain insights into the ADC and TDC distributions and compare the simulation with Data
- Overall, the shape of the distributions shows good agreement
- Additional application of corrections expected to improve the agreement

Agreement for the selection was found to be sufficient for the ADC & TDC comparison

21 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph Building and Input Feature Analysis for Edge Cl

Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

ADC and TDC 2D Comparison

22 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

ADC and TDC 2D Comparison

22June 5, 2023Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu,
Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Patterns For Displaced Vertices

Online Application – Limitations

Precision:

PyG employs high-precision (32 Bit) operations.

For FPGA, lower precision arithmetic may be needed, potentially affecting network accuracy.

Resource Consideration:

Space multiplexing, used over time multiplexing, increases FPGA resource usage.

The size of the IN and input graphs directly impacts resource usage.

Memory Limitations:

FPGA memory is limited and reliance on external memory can increase latency.

Optimizing input graphs and neural network model sizes is key for low latency.

Input Resolution:

Anticipated reduction in input feature resolution may require modification in data processing techniques and consideration of relative information.

Limitations when comparing PyTorch Geometric to the implementation of FPGAs

24 June 5, 2023 Philipp Dorwarth – Philipp.Dorwarth@student.kit.edu, Graph-Building and Input Feature Analysis for Edge Classification in the Central Drift Chamber at Belle II

Online Application – Estimate Computational Complexity

model	total FLOPs (MFLOP)
01	20.23 ± 0.05
02	33.94 ± 0.08
03	24.79 ± 0.06
04	34.03 ± 0.08
05	38.51 ± 0.09
06	47.53 ± 0.12
07	37.11 ± 0.08
08	46.15 ± 0.10
09	50.53 ± 0.11
10	59.97 ± 0.14

- Floating Point Operations (FLOPs) measure computational workload
 - They may not reflect actual FPGA performance!
- Model 10 shows slightly better node efficiency but comes with highly increased computational complexity

