

Improvements of the event cleaning step of the τ -embedding procedure

Christian Winter, Sebastian Brommer, Artur Gottmann, Roger Wolf, Günther Quast | 23 March 2023

www.kit.edu

Why the τ Embedding Method?

τ embedding method

Alternative data driven method to estimate $\tau\tau$ backgrounds.

The τ Embedding Method

Replace muons in $\mu\mu$ events with simulated $\tau\tau$ decays

- **Selection** of well-defined μμ pair events
- **2 Remove** μ energy deposits from the event record
- Simulation of the τ-leptons with the same four vector information as for the removed muons
- Merging the simulated ττ decays into the cleaned event

Simulation Step

Simulation Step

To validate or calculate of scale factors

- ${\color{black}\bullet} \ \mu \rightarrow \mu \text{ embedding}$
- ${\ }^{\bullet} \ \mu \rightarrow \text{e embedding}$

Validation using $\mu \to \mu$ Embedding

Good $\mu \to \mu$ embedded event

Validation using $\mu \to \mu$ Embedding

Original event

Good $\mu \to \mu$ embedded event

Karlsruher Institut für Technologie

Discrepancy in the high $E_{\rm T}^{\rm miss}$ Region

Observed during review of HIG-21-001

From HIG-21-001 Analysis Note

Discrepancy also in the $\mu \rightarrow \mu$ channel $_{(UL\ Run2018B)}$

Difference in $E_{\rm T}^{\rm miss}$

$$\Delta E_{\mathrm{T}}^{\mathrm{miss}} = \left| E_{\mathrm{T,\,miss}}^{\mathrm{orig}} - E_{\mathrm{T,\,miss}}^{\mathrm{emb}} \right|$$

- $E_{\rm T}^{\rm miss} \equiv {\rm PUPPI} {\rm MET} {\rm no corrections}$
- Huge amounts of MET created during embedding procedure
- 2.01 % events have ΔE^{miss}_T > 15 GeV, but some analyses are sensitive

Example how high $E_{\rm T}^{\rm miss}$ can emerge from insufficient event cleaning

CMS private work

p _T [GeV]	η	ϕ
431.7	0.653	0.780
32.0	0.438	1.457

Removed event

	/

$p_{ m T}[m GeV]$	η	ϕ
422.8	0.654	0.780
34.4	0.437	1.467

Improvements in the Removal of $\boldsymbol{\mu}$

 Removal of µ energy deposits in µ detector system completely rewritten

Improvements in the Removal of $\boldsymbol{\mu}$

- Removal of µ energy deposits in µ detector system completely rewritten
- Additional removal of hits in wires within a radius of 25 cm
 - \rightarrow Bremsstrahlung and em showers, which generate additional widely scattered hits
- 25 cm from study of MUO POG group [Bat19].

Improvements in the Removal of $\boldsymbol{\mu}$

Karlsruher Institut für Technologie

- Removal of µ energy deposits in µ detector system completely rewritten
- Additional removal of hits in wires within a radius of 25 cm
 - \rightarrow Bremsstrahlung and em showers, which generate additional widely scattered hits
- 25 cm from study of MUO POG group [Bat19].
- Fixes the issues in the previously shown example.

$\mu \rightarrow \mu \text{ embedded}$

Improvement of $E_{\rm T}^{\rm miss}$ distribution

- Improved removing of µ energy deposits in µ detector system in new cleaning algorithm
 - Including additional collections
 - Including additional cleaning in a 25 cm radius in the muon detector system
- Less missing p_T is created in embedding
 - $\Delta E_{\rm T}^{\rm miss} > 15\,{\rm GeV}$:
 - Old 2.01 %
 - New 1.79 %
- Ratio to correction weights

Using weights on whole 2018

Conclusion

- Found main cause for high E^{miss} difference and fixed it.
- Improved E_T^{miss} agreement in $\mu \rightarrow \mu$ emb.
- \blacksquare Tested weights on $\mu \to \mu$ emb.
- Tested in μτ_H channel, but there the agreement is good event without fix.

Next steps:

- Test the $\tau_H \tau_H$ channel
- Include the Improvements in the main CMSSW repo
- Continue Artur Gottmanns work: Makeing the τ -embedding fit for Run 3

References

- [1] Carlo Battilana. Shower studies with detector digi information. 24. Jan. 2019. URL: https://indico.cern.ch/event/791906/contributions/3290123/attachments/1784568/2904915/ Showers_with_digi_method.pdf (besucht am 09.03.2023).
- [2] Sebastian Brommer. "A data-driven method for Higgs boson analyses in di-τ final states for the LHC Run II and beyond". Diss. Karlsruhe Institute of Technology (KIT), 2022. DOI: 10.5445/IR/1000155107.
- [3] The CMS collaboration. "An embedding technique to determine ττ backgrounds in proton-proton collision data". In: *Journal of Instrumentation* 14.06 (Juni 2019), P06032–P06032. DOI: 10.1088/1748-0221/14/06/p06032.

Literatur

Difference of the Missing $p_{\rm T}$ difference

 $\Delta\Delta E_{\mathrm{T}}^{\mathrm{miss}} = \Delta E_{\mathrm{T,old}}^{\mathrm{miss}} - \Delta E_{\mathrm{T,new}}^{\mathrm{miss}}.$

- $\Delta\Delta E_{\mathrm{T}}^{\mathrm{miss}} < -15\,\mathrm{GeV}$: 0.093 %
- $\left|\Delta\Delta E_{\rm T}^{\rm miss}\right| \leq 15\,{\rm GeV}:99.61\,\%$
- $\Delta\Delta E_{\rm T}^{\rm miss} > 15\,{\rm GeV}: 0.29\,\%$

Literatur

•0

Karlsruher Institut für Technologie

Mostly worsened event

